

Kaleya Smallholders Company Ltd

Groundwater Assessment and Geophysical Survey

Project №. AQ22-003

31 March 2022

Aquaquest Ltd.

4 Cedar Rd, Woodlands P.O. Box 320006, Lusaka ZAMBIA

www.aquaquest.info zambia@aquaquest.info

Phone: +260 (0) 975 157 816

Prepared for:

Kaleya Smallholders Company Ltd

4 Cedar Road, Woodlands P.O. Box 320006, Lusaka Zambia

www.aquaquest.info zambia@aquaquest.info

Phone: +260 (0) 975 157 816

Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey

CONTENTS

1.	Inti	roduction and background	5
2.	Dat	ta review	7
2	.1	Climate	7
2	.2	Topography	9
2	.3	Geology	10
2	.4	General hydrogeology	11
3.	Fie	ld survey	15
3	.1	Site reconnaissance	
3	.2	Geophysical survey	17
3	.3	Survey results	19
3	.4	Site Ranking	23
4.	Cor	nclusions and recommendations	26
4	.1	Conclusions	26
4	.2	Recommendations	27
Refe	eren	ces	29
Ann	lex I	- Geophysical Survey Results – Profiles	30
Ann	lex I	I – Geophysical Survey Results – Vertical Electrical Soundings (VES)	46
Ann	lex I	II– Ranking and List of sites	77

LIST OF FIGURES

Figure 1: Location of Kaleya Estate (Google Earth satellite image)5
Figure 2: Elevation map of the area with elevation ranging between 1030 m amsl (green =
low) and 1110 m amsl (orange = high)9
Figure 3: Catchment area surrounding the KASCOL estate10
Figure 4: General geology; the dotted black line indicates a geological boundary. The estate
area is within the red boundary (GSD Zambia)11
Figure 5: Hydrogeological Map of the area (Bäumle, 2012), estate boundary in red13
Figure 6: Reconnaissance observations: Existing boreholes, dams and streams
Figure 7: Dolomite outcrop16
Figure 8: Schlumberger array18
Figure 9: Geophysical survey profiles (1-4 & 6)19
Figure 10: Geophysical profiles (5, 7-11)20

Figure 11: Geophysical profiles (12 & 13)	20
Figure 12: Geophysical profiles (14 & 15)	21
Figure 13: VES sites	
Figure 14: VES sites on Profile 12 &13	22
	24
Figure 16: Final best ranked VES sites (05, 07, 11, 12 & 14)	25

List of Tables

Table 1: Monthly rainfall data for Mazabuka (FAO, LocClim)	7
Table 2: Rainfall data recorded by KASCOL, for the years 2017-2020	8
Table 3: Monthly weather average data for Mazabuka (climate-data.org)	8
Table 4: Overview of existing boreholes	
Table 5. Site ranking for exploratory drilling on the estate	23
Table 5. Site Fanking for exploratory of ming on the estate	

1. INTRODUCTION AND BACKGROUND

Following Aquaquest's proposal (ref. PAQ22-001), Kaleya Smallholders Company (KASCOL) engaged the services of the Consultant to undertake a geophysical survey and investigate the potential for groundwater development at their Estate in Mazabuka district. Kaleya Estate is located in Southern Province, about 6 km south-west of Mazabuka town, off Livingstone Road and south of the Nakambala sugar plantation (Figure 1).

The groundwater investigation is part of a broader Feasibility Study for Irrigation System Development, which is being carried out simultaneously by Aquaquest. The results of the hydrogeological investigations and the subsequent exploratory drilling work, will further guide the water supply options that are available for the planned expansion of the Estate, which envisages and enhanced area of sugarcane plantation under drip-irrigation.

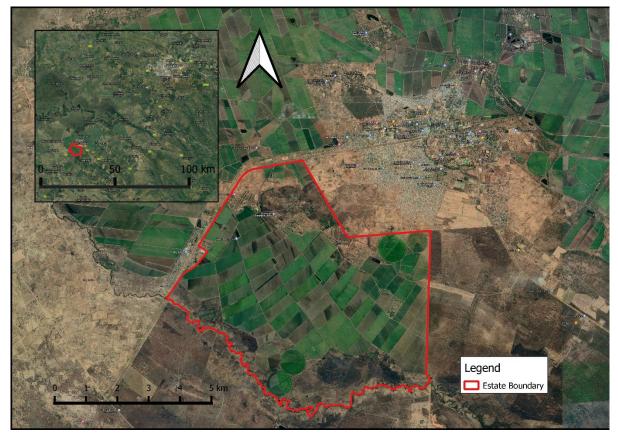


Figure 1: Location of Kaleya Estate (Google Earth satellite image)

The Estate is currently supplied with surface water from the Kafue River by Zambia Sugar, the principal off-taker of the sugarcane produce and main partner in the farming activities. In view of the growing irrigation requirements, the farm already experiences a deficit of water. In this light, a project grant has been provided by the Dutch Fund for Climate Development (DFCD). The purpose of the grant is to support a technical assessment for the planned conversion from the current furrow irrigation systems to much more water-

efficient drip irrigation systems, as well as a social & environmental study to assess the impacts of this development.

Aquaquest first conducted a review of the existing data (Chapter 2) and subsequently carried out a geophysical field survey (Chapter 3) to identify the locations with the highest potential for groundwater development.

2. DATA REVIEW

A data review was conducted with the aim of developing a general understanding of the local hydrogeology and for gaining insight in the local groundwater regime.

2.1 CLIMATE

In Mazabuka, the climate is warm and temperate. When compared with winter, the summers have much more rainfall. According to Köppen and Geiger, this climate is classified as **monsoon-influenced humid subtropical climate** (Cwa). The average annual temperature is 21.5 °C in Mazabuka. About 751 mm of precipitation falls annually.

In the area of KASCOL Estate and its surroundings, three seasons are clearly distinguishable:

- 1. Mid-April to mid-August, which is cool and dry. Mean day temperatures vary between 14°C and 18°C, with minimum temperatures often falling below 4°C in June and July.
- 2. The period from Mid-August to mid-November represents the hot and dry season. Mean daily temperatures vary between 20°C and 23°C, with highs up to 32°C in October and November.
- 3. Mid-November to Mid-April is warm and wet. Typically, the vast majority of the annual rainfall falls during this period.

Data from the three nearest weather stations (at Mazabuka Town, Kafue Polder and Magoye) was collected. Table 1 shows the monthly rainfall around Mazabuka, based on the rainfall measured at these three weather stations, expressed in the categories of low, high and best-estimated rainfall.

	Best Estimate	Low Estimate	High Estimate	
Precipitation	[mm]	[mm]	[mm]	
January	184	176	191.9	
February	176	155	197	
March	68	61	75.1	
April	11	0	25.6	
May	0	0	2.5	
June	0	0	0	
July	0	0	0	
August	0	0	0	
September	1	0.5	1.5	
October	16	12.9	19.1	
November	101	82.6	119.4	
December	211	210.1	211.9	
Total	768	698.1	844	

Table 1: Monthly rainfall data for Mazabuka (FAO, LocClim)

KASCOL also recorded their own rainfall data from 2017 onwards (Table 2).

Month	Mean precipitation [mm]				
January	123.2				
February	211.8				
March	67.0				
April	17.2				
Мау	0.0				
June	0.0				
July	0.0				
August	0.0				
September	0.0				
October	13.4				
November	81.8				
December	158.3				
Total	672.5				

Table 2: Rainfall data recorded by KASCOL, for the years 2017-2020

The recorded data by KASCOL suggests lower mean annual rainfall, when compared with the data from the three Mazabuka weather stations. This difference should mainly be attributed to the fact that the weather stations and FAO data cover a much longer period, while the fact that the recent year 2019 was exceptionally dry weighs heavily on the short-term record for KASCOL, thus significantly lowering the mean precipitation.

	January	February	March	April	May	June	July	August	September	October	November	December
Avg. Temperature °C	22.3 °C	22.1 °C	21.9 °C	20.8 °C	19.3 °С	17.3 °C	16.9 °C	19.8 °C	23.6 °C	26 °C	25.1 °C	23.1 °C
Min. Temperature °C	18.8 °C	18.6 °C	18.3 °С	16.3 °С	14.1 °C	12.1 °C	11.5 °C	14 °C	17.6 °C	20.3 °C	20.3 °C	19.3 °C
Max. Temperature °C	26.4 °C	26.3 °C	26.4 °C	25.8 °C	25 °C	23.1 °C	22.9 °C	26.3 °C	30.3 °C	32.1 °C	30.5 °C	27.6 °C
Precipitation / Rainfall mm	211	151	100	24	2	0	0	0	1	13	78	171
Humidity (%)	80%	81%	77%	66%	56%	55%	50%	41%	33%	35%	50%	73%
Rainy days (d)	17	15	12	3	0	0	0	0	0	2	9	16
avg. Sun hours (hours)	8.4	8.2	7.9	8.3	9.4	9.2	9.3	10.2	10.6	10.8	10.4	9

Table 3: Monthly weather average data for Mazabuka (climate-data.org)

Monthly average climate parameters for Mazabuka are further shown in Table 3. Additional conclusions from the review of regional and local climate data are as follows:

- The driest month is June. There is 0 mm of precipitation in June. In January, the precipitation reaches its peak, with an average of 211 mm.
- With an average of 26.0 °C, October is the warmest month. At 16.9 °C on average, July is the coldest month of the year.
- The month with the highest relative humidity is February (80.72 %). The month with the lowest relative humidity is September (33.08 %).
- The month with the highest number of rainy days is January (23.23 days). The month with the lowest number of rainy days is August (0.03 days).

2.2 TOPOGRAPHY

The project area is located approximately 135 km south of Lusaka, off Livingstone Road, and about 6 km south of Mazabuka CBD.

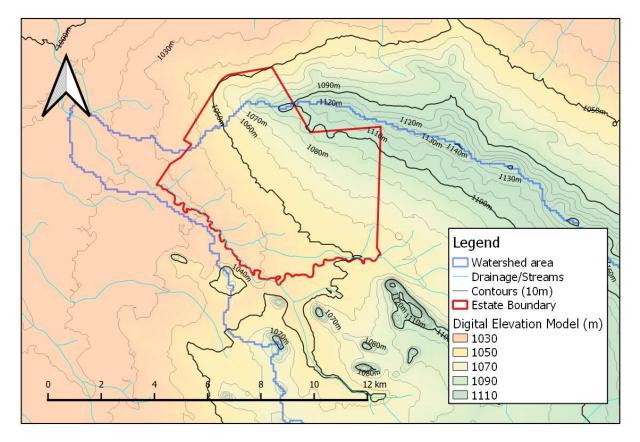


Figure 2: Elevation map of the area with elevation ranging between 1030 m amsl (green = low) and 1110 m amsl (orange = high).

Most of the Estate is relatively flat and defined by a gentle, relatively steady, and constant slope towards the southwest. The relatively flat part of the estate covers over 80percent and is mostly the arable portion where sugar cane fields are located.

The area along the northeastern border forms a topographic high of approximately 1,120 m amsl. The area with the lowest elevation (1,030 m amsl) is along the southwestern boundary, which is formed by the Kaleya River (Figure 3). The Kaleya stream flows from East to the north west and is a tributary of the Kafue River.

Catchment delineation shows that the estate is situated in the downstream part of the watershed of the Kaleya River, a tributary of the Kafue River (see Figure 3). Total catchment area amounts to 570km² and upstream catchment area amounts to 556.8km².

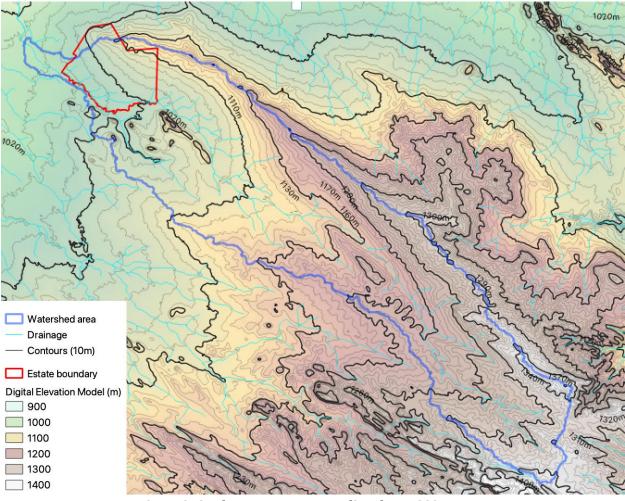


Figure 3: Catchment area surrounding the KASCOL estate

2.3 GEOLOGY

Kaleya Estate lies within the 1527 SE Quarter geological map of the Mazabuka Area, 1963, produced by the Geological Survey Department of the Republic of Zambia (Figure 4).

According to the geological map, limestone/dolomite formations are found in the more elevated northern parts of the farm. Dolomite outcrops are visible in the northeastern part of the estate.

The central and southern parts of the Estate are covered by a relatively thin layer of alluvium and residual deposits (i.e. hillslope deposits, colluvium). This is where the farming activities and plantations are situated.

Along the southern perimeter of the estate, quartz-muscovite rocks are exposed in the bottom of the Kaleya River valley, due to erosion and incision. Further east and west, the valley bottom changes to limestone/dolomite formations.

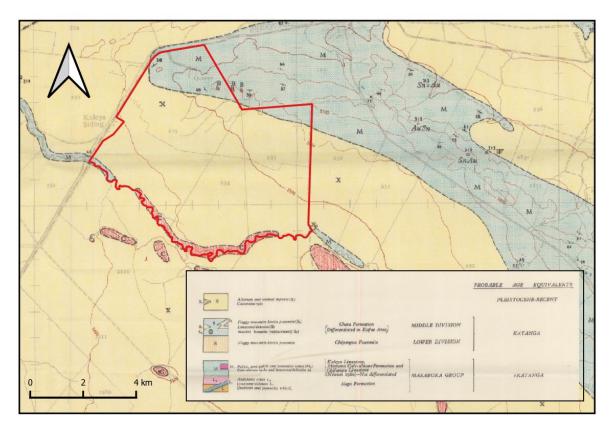


Figure 4: General geology; the dotted black line indicates a geological boundary. The estate area is within the red boundary (GSD Zambia).

The geological stratigraphy starts with alluvial sediments at the top, followed by dolomites and the quartzite metasediments at the bottom. Quartzite metasediments outcrops where not observed during fieldwork and have been inferred from the regional geological map.

2.4 GENERAL HYDROGEOLOGY

Available data was collected and analyzed to gain insight into the general hydrogeology and to develop a conceptual model of groundwater occurrence and movement within the study area. The occurrence and distribution of different geological units, soils, structural features, topography, rainfall, vegetation, and evapotranspiration all influence the local groundwater potential.

Typical conditions that may allow for the development of a viable aquifer are:

- Chemical weathering ('karstification') of carbonate rocks, such as the Lusaka Dolomite or banded limestones of the Cheta Formation, which are indicated to occur along the north eastern boundary of the estate.
- Highly fractured zones in the quartzite metasediments (Fractures are formed due to structural processes, resulting in deformation and cracking of the rock; where present and well-developed, fractures are an efficient means for transmission and abstraction of water in otherwise impermeable rocks), and;
- Thick weathered overburden with suitable coarse-grained aquifer material that provides both a conduit and adequate open pore-space for storage of water).

The project area is underlain by carbonate rocks (dolomites), which typically provide moderate to high yields, due to the possibile formation of karst systems within the rock. Karst features are caused by gradual dissolution of calcium carbonate minerals by the infiltration, percolation, and transmission of acidic water within weak zones (including fractures) in the carbonate rock. The dissolution will occur until the weak acids are neutralized, but will resume when new chemically aggressive (rain -or surface) water infiltrates downwards into the soil, rendering karstification a self-propelling process that may create large underground crevices and cavities.

A groundwater map of the area was developed by BGR (Baümle et al., 2007). According to the map (Figure 5), which indicates the aquifer potential around the estate, the general direction of groundwater flow is towards the north-west. The map is based on the geological map, in combination with borehole observations.

The geohydrological map shows potential for a *local discontinuous productive aquifer or an extensive but only moderately productive aquifer* in the northern part of the estate, which is underlain by limestone/dolomite. Primary porosity in these formations is generally low, limiting the amount of water that can be stored inter-granularly. Secondary porosity however can be high: dissolved cavities and fractures within the limestone/dolomite can function as great water storage reservoirs. Therefore, the volume of water that exists in the ground is likely hosted mainly within solution cavities and fractures, of which some may extend several kilometers in length. The solution cavities are known to host significant amounts of groundwater. Fractures of 1.0 mm in width already have the capability to transmit high volumes of water. A zone consisting of fractures several cm or greater in width has the potential to support submersible pumping. The challenge is to identify these zones, which are generally not easily recognizable.

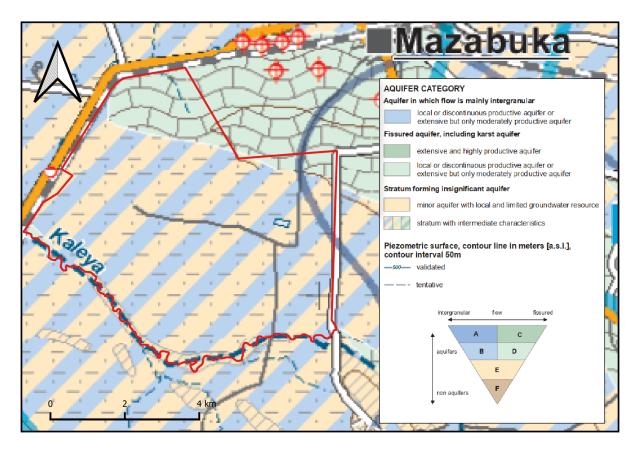


Figure 5: Hydrogeological Map of the area (Bäumle, 2012), estate boundary in red.

Boreholes drilled in this area on the estate have already resulted in yields that look promising. However, only pumping rates are available for these boreholes; important other data is lacking (see Chapter 4.3.1). A detailed assessment of the possible yields in this area requires groundwater exploration and corresponding test pumping.

The central and southern parts of the estate are characterized by *Strata with intermediate characteristics.* Relatively shallow sedimentary aquifers may occur within thick soils, weathered profiles, unconsolidated alluvial deposits and colluvium (hillslope deposits).

Alluvial formations of adequate thickness normally present favourable conditions for groundwater occurrence: deposits of pure, unconsolidated sands are highly transmissive. However, the hydraulic conductivity rapidly decreases in the presence of clays, even if their portion is small. Heavy clays are impermeable, even though their porosity can be as high as 50%. To evaluate the aquifer potential of alluvial deposits, the thickness and distribution of clay layers is important. Their presence will reduce the amount of recharge and effective storage, and the potential yield of a borehole.

Due to the anticipated mixture of river deposits, soils, weathered residue and colluvium, the texture of the local unconsolidated deposits is expected to be diverse and heterogeneous. In

a vertical section, the composition may suddenly change from gravelly to heavy clay. However, clayey textures are expected to be dominant. Hence, while groundwater is expected to occur at shallow to medium depths within these unconsolidated deposits, yields are expected to be relatively low, especially when compared with successful boreholes in the limestones.

In areas with a thin cover of soils, weather zones, alluvium or colluvium, the hydrogeological properties of the main aquifer are generally determined by the underlying rock formation, which are believed to be dolomites in the northern part, and less favourable quartz-muscovite rocks in the southern part of the Estate.

3. FIELD SURVEY

3.1 SITE RECONNAISSANCE

Before the start of the geophysical survey, Aquaquest performed several field visits during the Pre-Feasibility stage of the study, on 16 November 2021 and 2-3 December 2021. The purpose of these initial visional assessments was to identify any existing sources of water (such as boreholes, shallow dug wells, streams, etc.) and appraise physical site characteristics, such as geomorphology and drainage, vegetation, soils, rock outcrops and accessibility.

During the site reconnaissance, all known existing boreholes, dams and streams were mapped (see Figure 6 and Table 4). The boreholes are almost exclusively situated along the intersection between the dolomite/calcite formation in the north-northeast and the alluvial deposits in the center of the estate.

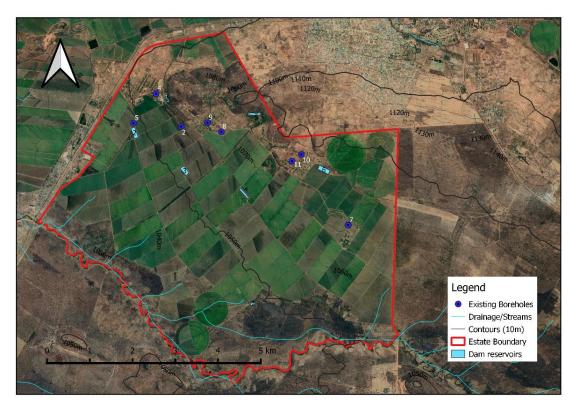


Figure 6: Reconnaissance observations: Existing boreholes, dams and streams

The existing boreholes are used for domestic purposes only. An overview of the borehole depth, pump capacity (in horsepower), size of the casing and maximum pumping rate of the installed pump is presented in Table 4 below.

S/no.	Borehole Name	Depth	Pump capacity (horse power)	Size of Casing	Pumping rate (L/s)
2	Main Borehole-2	50	6.5 HP pump	8"	20
4	Recreation Club	50	5 HP pump	4"	7.5
5	Mizinga compound	50	3 HP pump	5"	4.55
7	Tuyake borehole	50	3 HP pump	8"	4.55
8	Group 2 Borehole	50	5 HP pump	8"	7.5
9	Group 2 Borehole	50	5 HP pump	8"	7.5
10	Group 3(b)	50	2 HP pump	5"	2.72
11	Group 4(a)	50	1 HP pump	5"	1.3

Table 4: Overview of existing boreholes

Yields range from moderate to high, with an average of 6.95 l/s. It should be noted that, on basis of a pumping rate of 20 l/s from a 6.5 horsepower pump, it cannot be concluded that such a borehole would be able to provide a sustainable yield of 20 l/s, either during peak demands or throughout an entire year.

The estate is located on a relatively flat land with a few small hills on the northeastern side. Water conveyance and drainage systems on the Estate comprise a water pipeline, a manmade canal system that draws water from the Kafue River in the north and is used to irrigate the sugarcane fields, and the small Kaleya stream that flows from east to west along the southern border of the estate.

Some outcrops of dolomite were observed (Figure 7) in the northern parts of the Estate.

Figure 7: Dolomite outcrop

The vegetation of the uncultivated land consists mostly of small trees and shrubs. Soils on the estate are mainly of the (clayey) Luvisol type.

An analysis of the Dynamic Groundwater Recharge (DGR) was made during the Pre-Feasibility stage of the study (Aquaquest Report AQ21-022, 2021), using nine different scenarios with low-to-high recharge coefficients and small-to-large contributing catchment size.

3.2 GEOPHYSICAL SURVEY

The geophysical survey consisted of a combination of resistivity profiling and vertical electrical soundings, which were used to identify anomalies and other low resistivity zones (underground conductors of current), such as:

- Areas near vertical zones of fractured or faulted rock, and other zones of structural weakness and/or alteration
- Lithological boundaries
- Areas of substantial thickness of weathered overburden
- Areas with water-bearing layers

The resistivity profiles were conducted using an ABEM SAS 300 Terrameter with a current electrode spread (AB) of 180 m, resulting in an investigated depth of around 45-60 m bgl.

Resistivity profiling

Resistivity is a fundamental property that quantifies how strongly a given material opposes the flow of electrical current; consequently, it is the opposite of electrical *conductivity*. Different soil types may be distinguished by looking at the resistivity of the soil. High resistivity readings indicate the presence of compact rock formations, like fresh granite and gneiss, while low resistivity readings indicate fractured and/or weathered rock formations, water-bearing and soft formations, unconsolidated formations and/or materials with a high clay content. Low resistivities are therefore indicative of a certain likelihood to encounter groundwater at a given location.

Resistivity is a function of the resistance and the dimensions of the object the electric current is passing through and can be expressed as in the following equation:

$$R = \frac{U}{I} = \rho \frac{l}{A}$$

Where R is the resistance in ohm (Ω), U is the voltage in volt (V), I is the current in ampere (A), ρ is the resistivity in ohm metre (Ω m), I is length of the sample (m) and A is the cross sectional area of the sample (m²).

The ground resistivity cannot simply be measured by simultaneously measuring the current and the voltage between a single pair of electrodes, because the contact resistance between the electrodes and the soil is relatively large. Instead, the voltage is measured by a separate pair of electrodes connected to a high-impedance voltmeter, which draws almost no current - thus making the voltage drop over the potential electrodes (MN) negligible. The resistivity measured by an array may be interpreted as a constant resistivity if the soil is homogeneous. This constant resistivity is called the *apparent resistivity*.

There are multiple common electrode arrays to measure the resistivity of the soil. The Schlumberger array is selected as the most appropriate method for the case presented in this report. Figure 8 shows a schematic visualisation of the Schlumberger array.

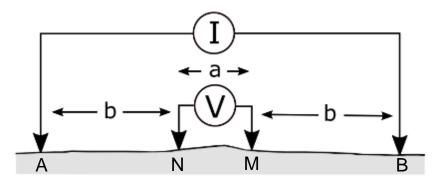


Figure 8: Schlumberger array

The apparent resistivity can be calculated from the known geometric factors. For the Schlumberger method, the apparent resistivity is expressed by the following equation:

$$\rho = \pi \frac{b(b+a)}{a} \frac{V}{I} \approx \pi \frac{b^2}{a} \frac{V}{I} \quad [if \ a \ll b]$$

In the Schlumberger method, the distance b is much larger than the distance a, which allows for the simplification of the equation.

Resistivity profiles show the values of apparent resistivity at a certain probing-depth, as well as the variations along the investigated transect. Sudden changes in resistivity along a horizontal profile (and in particular: low-resistivity anomalies) are indicative of changes in geological material, possible faults, and occurrence of underground water.

The interpretation of results from the resistivity method requires a number of assumptions. These assumptions might not always be realistic in the field. For instance, soil materials are never completely homogeneous. That is why the resistivity measurements should always be used in combination with other data sources, like geological maps, satellite imagery, field visits, and practical observations by a trained hydrogeologist.

Vertical electrical sounding (VES)

This method is used to identify vertical variations of resistivity with depth at a certain location, and to identify the depth to bedrock, which can be derived from the resulting VES-

graph of apparent resistivity as a function of AB/2 (note: AB/2 represents an indication of depth, but importantly, it does not indicate an actual depth).

The VES are usually set at promising anomalies and transitions derived from the resistivity profiles, and other points of interest. Where there is control data available from borehole drilling, VES results can be used to infer subsurface conditions by interpolating between known points. The investigated depth is related to the spread of the electrodes (potential electrodes MN/2 and current electrodes AB/2). The VES survey was used with a maximum spread of 400 m, resulting in a depth of investigation up to about 100-120 m bgl.

3.3 SURVEY RESULTS

The geophysical survey was performed from 19 to 29 January 2022. A total of 15 resistivity profiles were executed, covering a combined length of 11.2 km, with measurements taken at an interval of every 10 meter. After plotting and analysis of the profile results, 100 sites were considered of interest, of which 30 were selected for VES measurements.

Figure 9 to Figure 12 provide schematic overviews of the profile results, with low resistivities indicated in blue, and relatively high values shown in red color. Plotted field data (profile graphs) are included in Annex I.

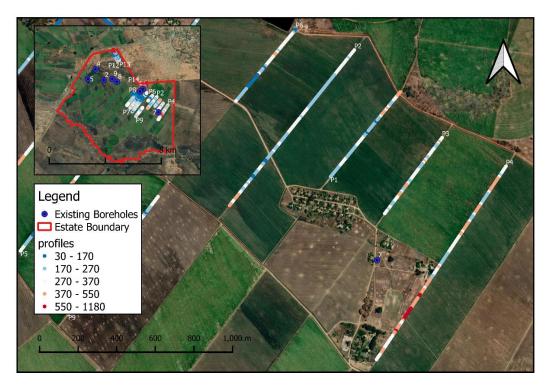


Figure 9: Geophysical survey profiles (1-4 & 6)

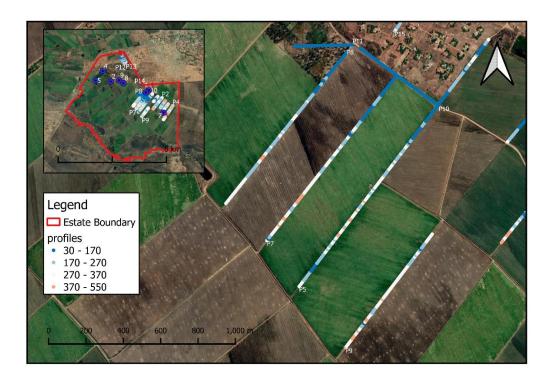


Figure 10: Geophysical profiles (5, 7-11)

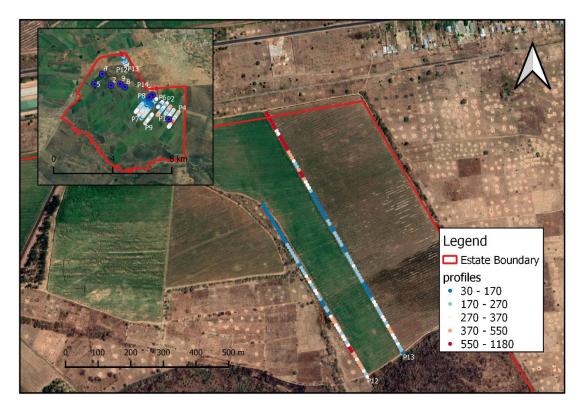


Figure 11: Geophysical profiles (12 & 13)

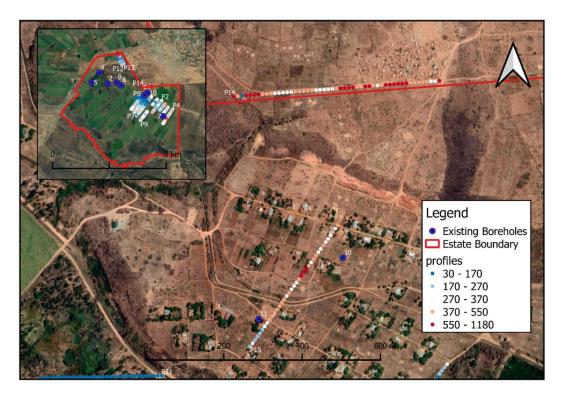


Figure 12: Geophysical profiles (14 & 15)

General observations and indications derived from the survey results are as follows:

- Lower resistivity values usually indicate relatively deep weathering, and/or the presence of faults, joints and fractures, which could be water-bearing;
- High resistivity values are attributed to massive rocks, which are not conductive and generally do not contain significant amounts of groundwater;
- From the 11.19 km of profiles done on the Farm, 100 interesting sites (anomalies) were considered. Among these, 30 were selected for Vertical Electrical Soundings.
- Low resistivity values were generally observed on the profiles that are close to the sugarcane fields: this could be attributed to the overlaying alluvial formation on which the cultivation occurs, as well as the high soil moisture content, or even water-logging. Following the heavy rains experienced during the month prior to the survey, the alluvial material and clayey soils will be characterized by relatively good electrical conductivity, and hence, low resistivity.
- The profiles on which readings are relatively high are those in areas where outcrops of the dolomite can be seen at the surface (P12, P13, P14).

In total, 30 VES were carried out at the most promising low resistivity points ("anomalies") obtained from the profile lines (see Figure 13 and Figure 14). VES results are shown in Annex II.

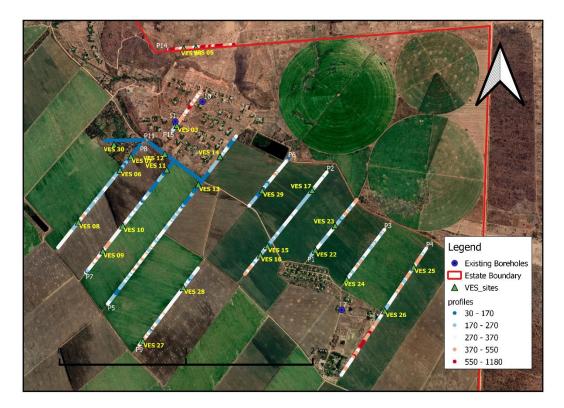


Figure 13: VES sites

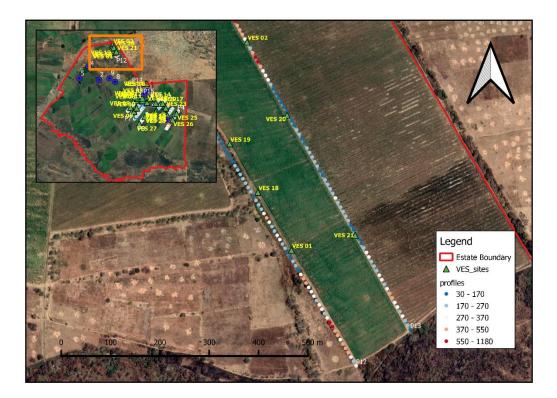


Figure 14: VES sites on Profile 12 &13.

3.4 SITE RANKING

Site selection was done initially during the survey. After running the more than 11 km of profiles, 30 promising sites with the best anomalous characteristics were chosen for the vertical electrical sounding (VES). The purpose of the VES is to observe the vertical characteristics of the selected site, assess aquifer potential at the points of interest, determine drilling depths, and approximate aquifer thickness.

A rating table was prepared, in which each location was rated and ranked, based on the general resistivity values, the anomality obtained from the resistivity profile, the VES interpretation, and additional collected data (geological maps, hydrogeological maps, aerial photographs, current infrastructure, vegetation trends and other field observations).

The top-ranked 13 sites are shown in Table 3Error! Reference source not found.; from these relatively promising sites, the first 5 to 8 are recommended for pilot drilling, ie. VES 12, 05, 11, 01, 20, as well as VES 06, 29 and 14. Five further sites for possible consideration (depending on the initial results) are VES 02, 07, 25, 26 and 30. The exploratory drilling should follow a flexible approach, whereby the results of the initial pilot holes should determine the next site(s) to be drilled from the list best ranked locations.

Rank	VES	Site	Profile	Combined rating	UTMX	UTMY
1	VES 12	68	10	7.5	577933	8242883
2-3	VES 05	92	14	7.25	578178	8243722
2-3	VES 11	51	7	7.25	577948	8242758
4-5	VES 01	78	12	7	576302	8245522
4-5	VES 20	87	13	7	576293	8245795
6-7	VES 06	55	8	6.75	577578	8242756
6-7	VES 29	39	6	6.75	578702	8242595
8	VES 14	34	5	6.5	578368	8242862
9-13	VES 02	88	13	6	576212	8245943
9-13	VES 07	54	8	6	577665	8242864
9-13	VES 25	16	4	6	579899	8241992
9-13	VES 26	19	4	6	579671	8241645
9-13	VES 30	72	11	6	577531	8242958

Table 5. Site ranking for exploratory drilling on the estate

Coordinate system used: UTM Arc 1950 Zone 35S

The complete list for the 30 ranked VES sites is included in **Annex III– Ranking and List** of sites.

In general, VES with similar characteristics that are located at close distance from each other (e.g., VES 11 and 12) need not both be drilled during a relatively small pilot drilling programme with a limited number of attempts. In this case, it is better to spread the exploration efforts over more widely distributed sites that look promising, are marked by different VES-signatures, but that are located at greater distance from each other. In this approach, the benefits of a pilot drilling exercise will be better distributed throughout the project area, resulting in better insights into spatial variations, and more choices for the eventual development of the production boreholes.

Figure 15: Final best ranked VES sites (01, 02, 18, 20 & 21)

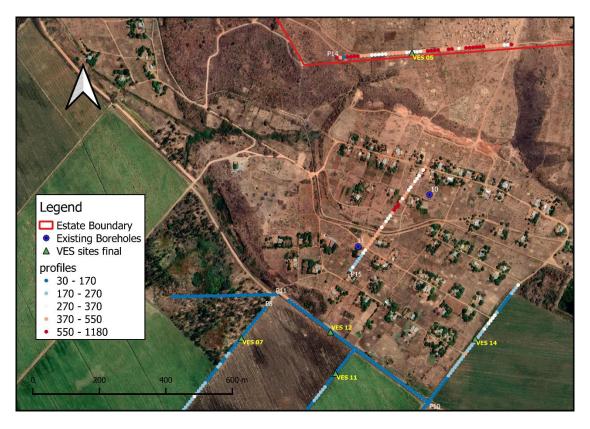


Figure 16: Final best ranked VES sites (05, 07, 11, 12 & 14)

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

As part of a broader Feasibility Study for Irrigation System Development, Aquaquest was contracted by Kaleya Smallholders Company Ltd to conduct a hydrogeological and geophysical survey at their Estate in Mazabuka District, Southern Province. A total of 15 geoelectrical profiles were run with a combined length of 11.2 km, while 30 Vertical Electrical Soundings (VES) were carried out. The results of the survey and a review of existing data have been compiled to identify sites with the best possible prospects for pilot borehole drilling and future groundwater abstraction.

The geology of the area consists mostly of carbonate rocks (dolomites and limestones), overlain by a relatively thin layer unconsolidated soils, weathered materials or alluvial sediments. The potential for groundwater development in carbonate rocks is usually high, due to presence of fractures and karst features.

According to the geohydrological map, the northern part of the estate, which is underlain by limestone/dolomite, is characterized by a *local discontinuous productive aquifer or an extensive but only moderately productive aquifer*. The central and southern parts of the estate are characterized by *Strata with intermediate characteristics*.

Further to Aquaquest's review of the available data and the overall hydrogeological setting, we believe that the potential for groundwater development at Kaleya Estate is in fact relatively good. The area underlain by dolomites and crystalline limestones (also where these are covered by overburden) is indeed marked by a discontinuous fracture and karst aquifer. Where this aquifer is penetrated by boreholes, expected yields are relatively high: sustainable abstractions in the range of 15-30m³/hr should be feasible from properly sited and professionally drilled production wells.

The geophysical survey results are fairly promising, even though most of the VES suggest the presence of massive crystalline rocks at relatively shallow to moderate depths. Locally, conspicuous profile anomalies and interrupted rising limbs of VES curves at moderate to relatively great depths suggest that there are fracture systems and karst features between depths of 30 and 90 m bgl. In this regard, 13 sites (see Table 3) were selected asError! Reference source not found. relatively promising sites. Among these, the first 5 to 8 best sites are recommended for pilot drilling, ie. VES 12, 05, 11, 01, 20, as well as VES 06, 29 and 14. Five further sites for possible consideration (depending on the initial results) are VES 02, 07, 25, 26 and 30. The exploratory drilling should follow a flexible approach, whereby the results of the initial pilot holes should determine the next site(s) to be drilled from the list best ranked locations.

4.2 **Recommendations**

Bed on the results from the geophysical surveys and the hydrogeological analysis of the area, Aquaquest recommends the following borehole development works:

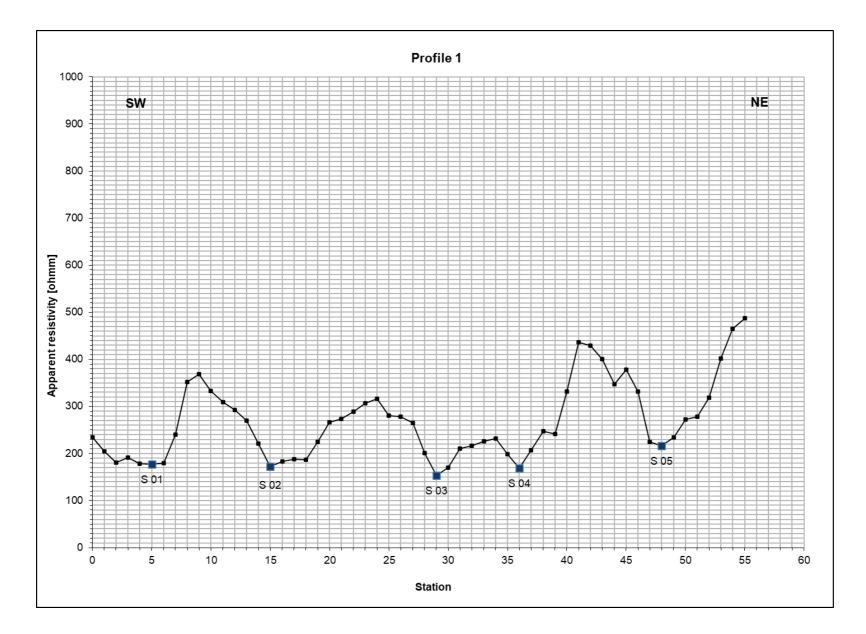
- Commence with the drilling of 5 highest-ranked pilot holes using the recommended VES survey points. Consider 3 additional sites if drilling budget allows.
- Engage an experienced and competent drilling contractor. The construction of a borehole is an expensive exercise, which carries a relatively high risk. Poor workmanship and application of substandard designs and materials may lead to very disappointing results, even at potentially high-yielding sites. A good contractor, applying proper drilling standards and good quality installation materials, will generally be able to construct a higher yielding and more sustainable borehole than a relatively poor contractor.
- It is expected that the drilling will encounter weak and unstable ground conditions, which may result in collapsing of the borehole. The selected driller should therefore be experienced and well-equipped: this includes the availability of sufficient quantities of temporary casings to adequately deal with collapsing conditions.
- For the 5 selected pilot holes at the currently identified sites, it is recommended to execute an exploratory drilling program, with 6-inch pilot holes drilled at the most favourable sites shown Table 5. Subsequently, only the highest yielding pilot holes (e.g. those with a yield in excess of 3 l/s or > 10m³/hr) should be developed (reamed, cased and tested) into production boreholes, in order to save costs and obtain the most productive boreholes for future groundwater abstraction.
- Based on the results of the exploratory drilling, the ranking of sites should be regularly reviewed (initially, after every completed pilot hole) and further improved, to adjust the site selection in line with the actual findings, increase the success rate, and optimize the borehole yields;
- Collect and keep a full and detailed record during the drilling of the pilot holes and the subsequent development of production boreholes. This will form the baseline for the most effective well-design, guide any future rehabilitation works that may be required, and assist in the roll-out of further groundwater development scenarios at the Kaleya Estate;
- Engage a competent hydrogeologist to provide an independent verification of drilling and follow-up well construction activities, provide professional supervision on behalf of the client, assist the contractor in identifying 'productive' zones, to collect detailed data during the drilling process, and to design the most efficient well for the encountered hydrogeological conditions. The hydrogeologist will also be able to review and adapt the drill site selection as needed, in line with the results from the completed pilot holes; The supervision service also provides an independent verification of both standards and quantities of completed work, installed materials

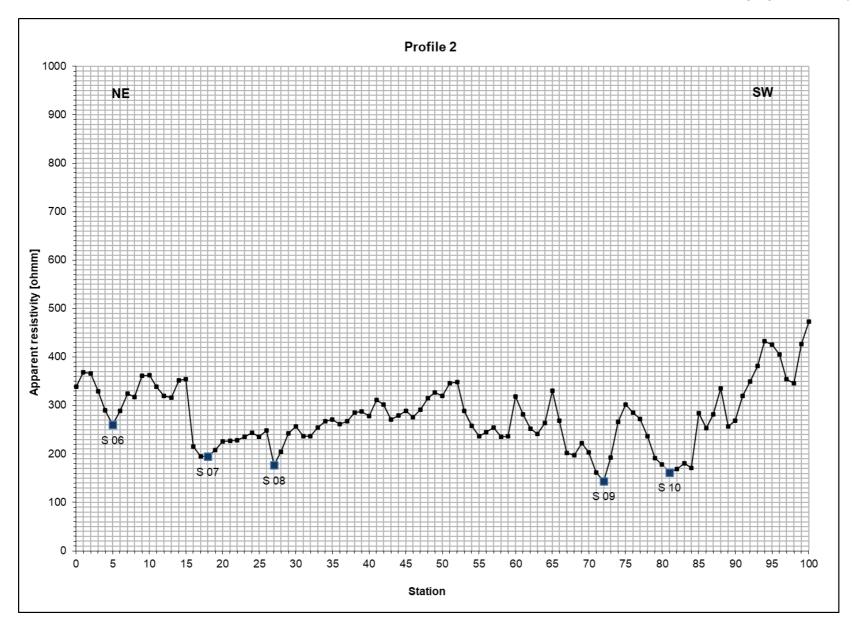
and consumables used during the drilling process. This is essential to avoid potential shortcuts by the contractor and to guarantee best value for money throughout the project;

- Every new borehole should be test pumped for at least 24 hours at constant discharge to determine the sustainable pumping rate, select the correct type of pump and its depth-setting in the borehole. The constant discharge test should be preceded by a 4-6 hour step-drawdown test at gradually increasing yield steps (e.g. at 4 steps of 1, 2, 4 and 6 l/s). Regular water level monitoring will increase the lifespan of the pump and also allow monitoring of the water resource over time;
- Boreholes must be registered with the Water Management Authority (WARMA).

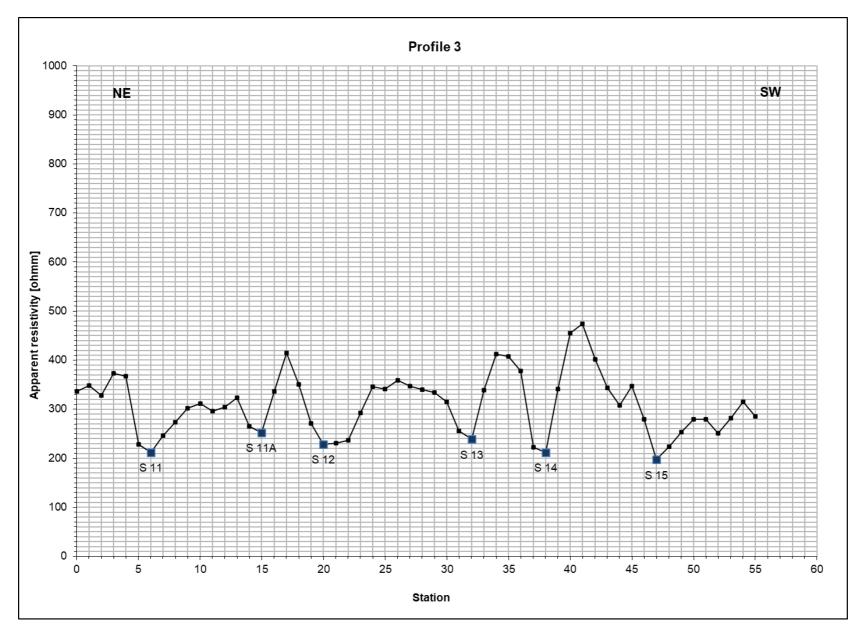
REFERENCES

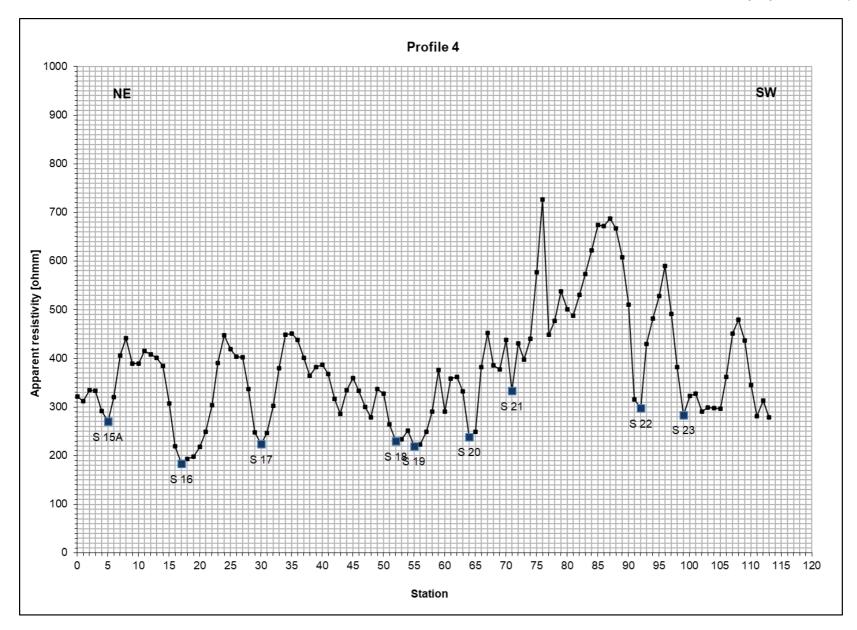
[1] Bakalowicz, M. 2005. Karst groundwater: a challenge for new resources. Hydrogeology Journal. 13: 148-160.

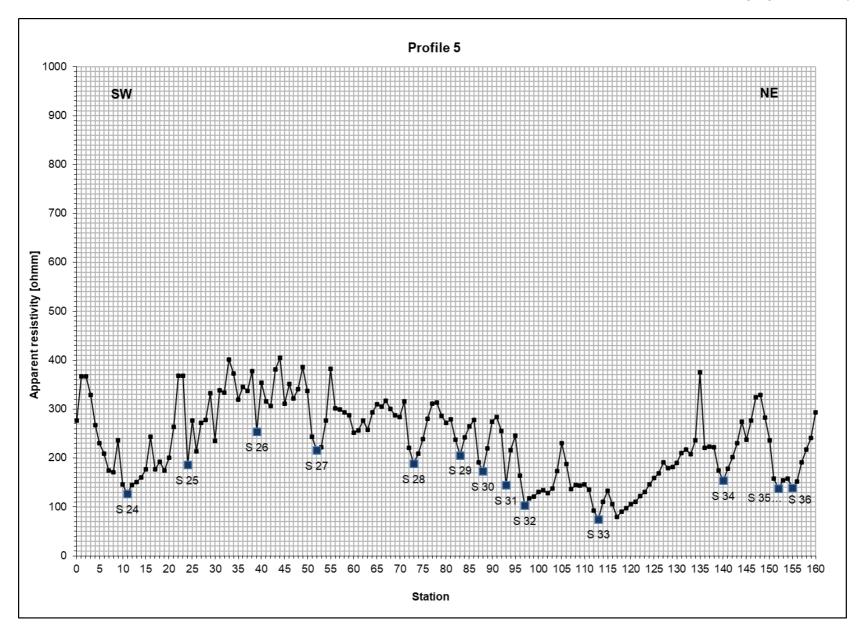

[2] Bäumle Roland, Andrea Nick, Beauty Shamboko-Mbale, Chisanga Siwale and Simon Kang'omba, 2012. Groundwater Resources of the Mwembeshi and Chongwe Catchments including Lusaka Region. *A Brief Description of Physiography, Geology, Climate, Hydrology and Groundwater Systems of the Area.* Department of Water Affairs Lusaka and Federal Institute for Geosciences and Natural Resources, Hannover. 65 pages.

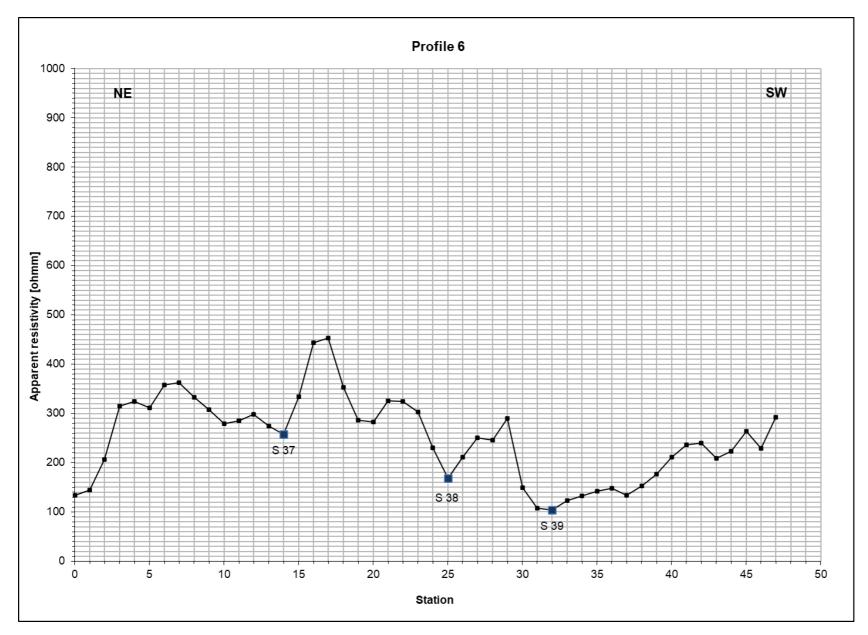

[3] Cairney, T., 1966. The Geological Map of the Leopards Hill Area. To accompany report No 21. Geological Survey Department, Zambia

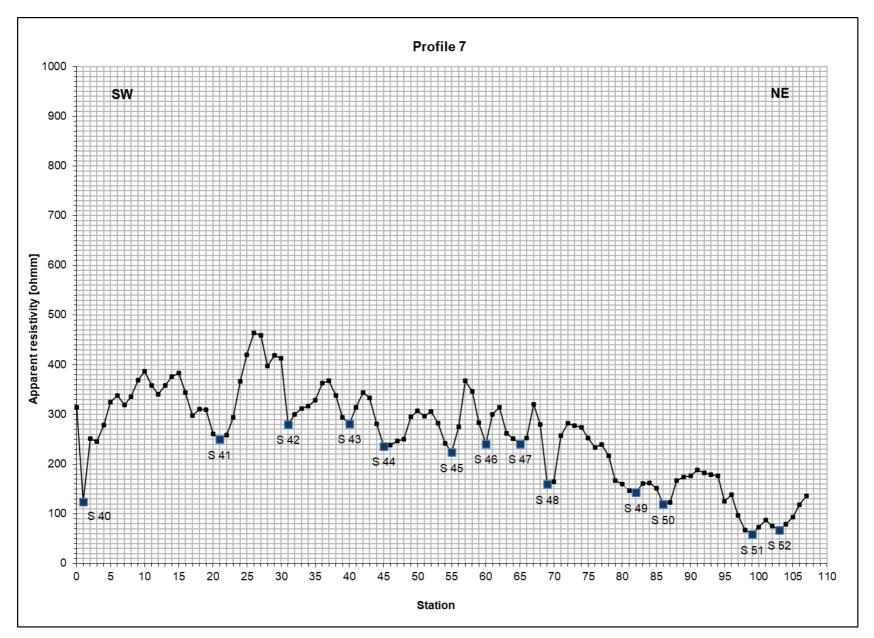
- [4] Fetter, C.W. 2001. Applied Hydrogeology. Prentice Hall. 4th Edition.
- [5] https://en.climate-data.org/africa/zambia/southern-province/mazabuka-23259/
- [6] https://www.mindat.org/climate.php

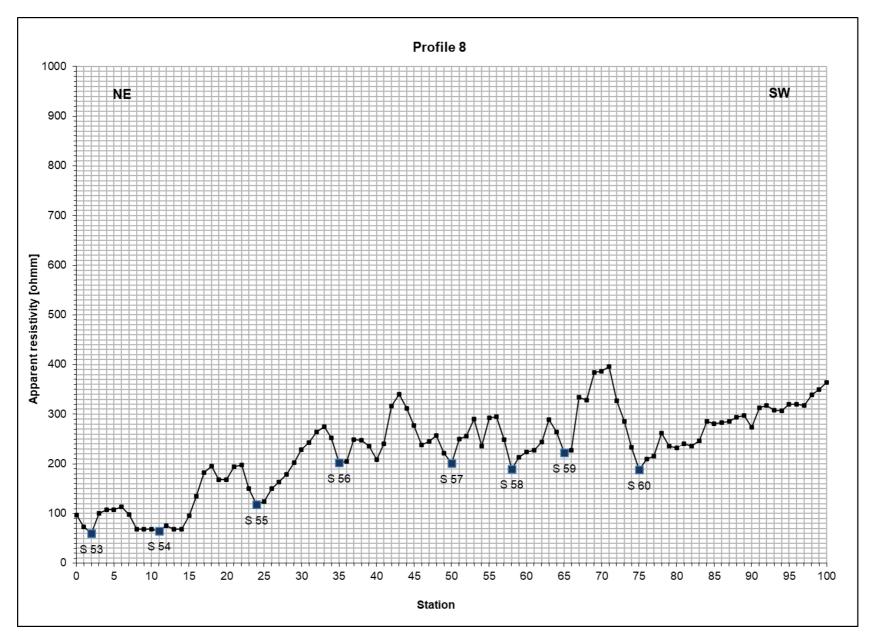

ANNEX I - GEOPHYSICAL SURVEY RESULTS – PROFILES

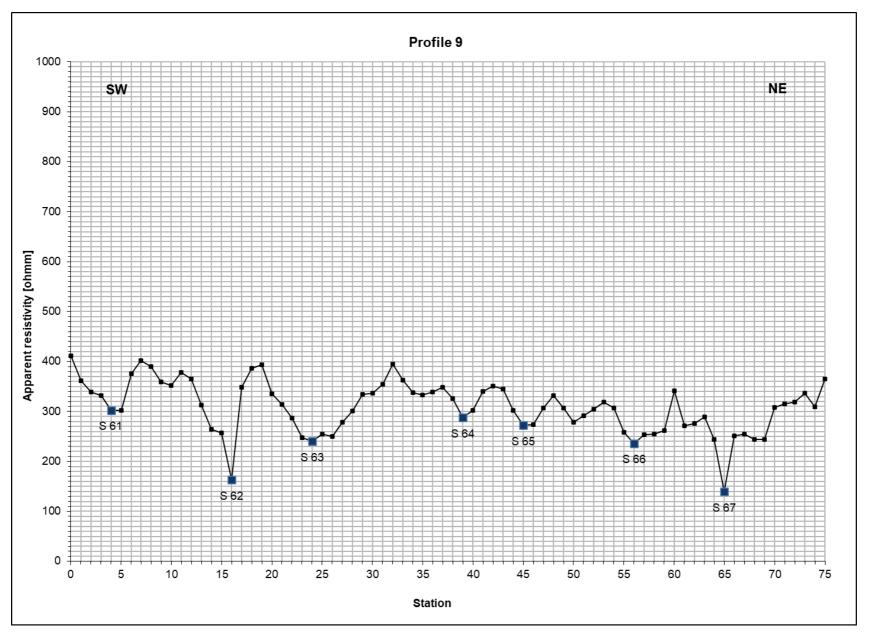

- Profile 1
- Profile 2
- Profile 3
- Profile 4
- Profile 5
- Profile 6
- Profile 7
- Profile 8
- Profile 9
- Profile 10
- Profile 11
- Profile 12
- Profile 13
- Profile 14
- Profile 15

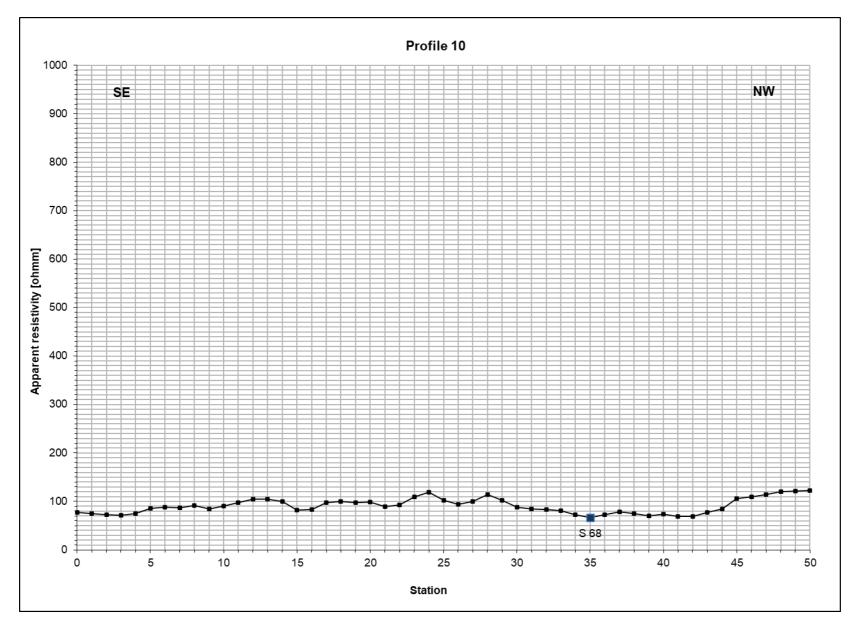


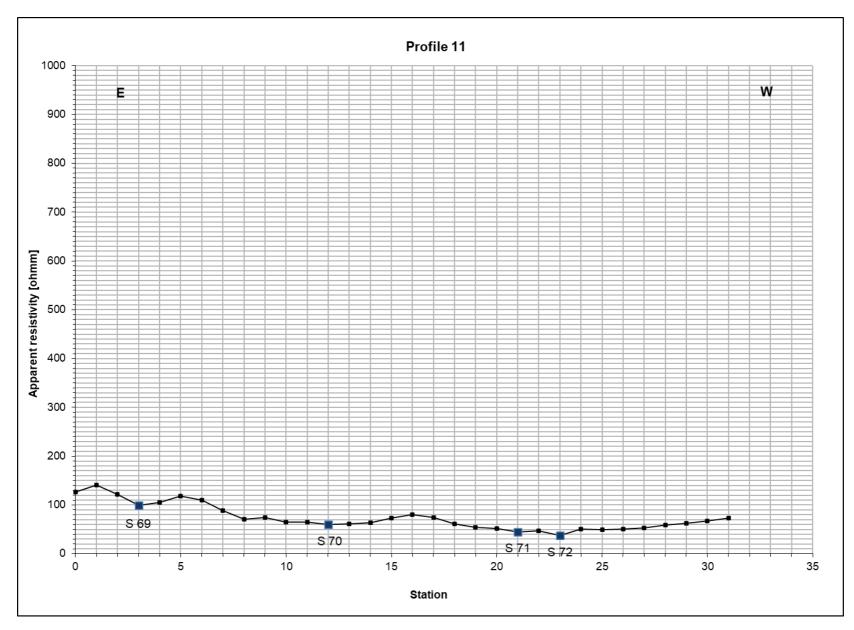



Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey

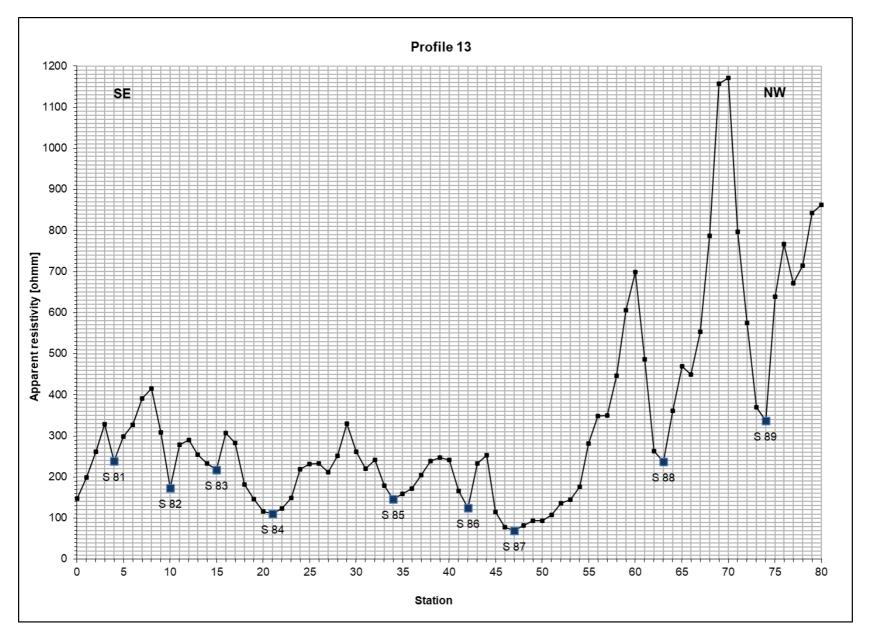


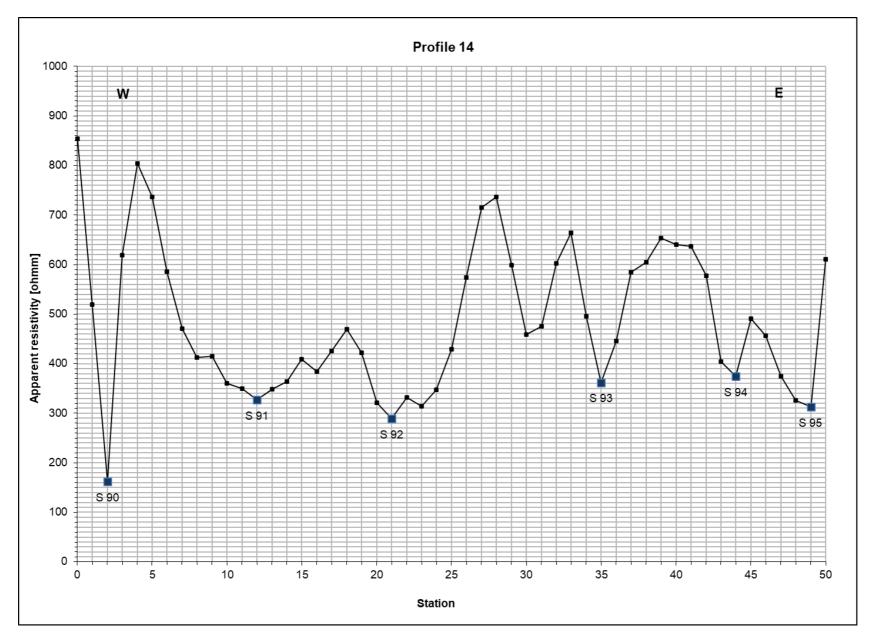


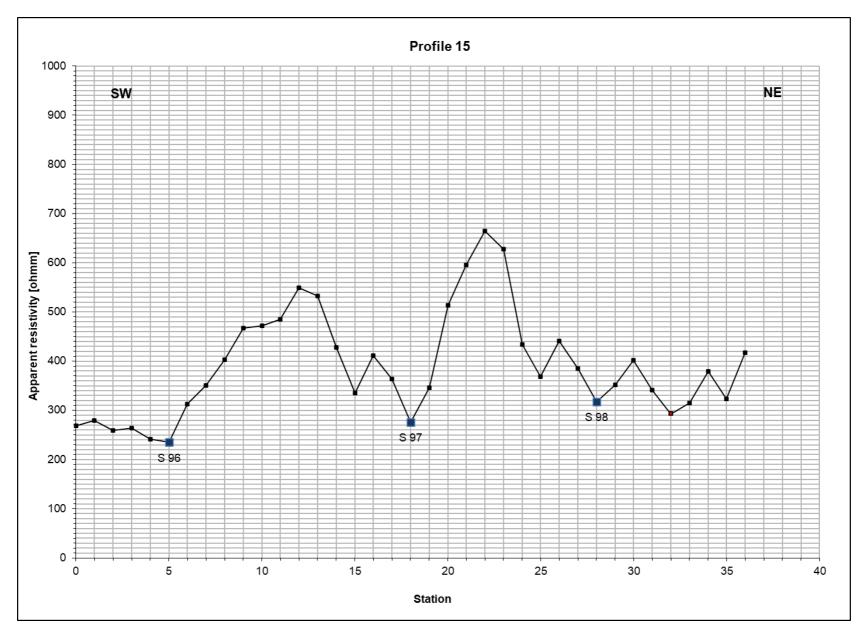

Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey

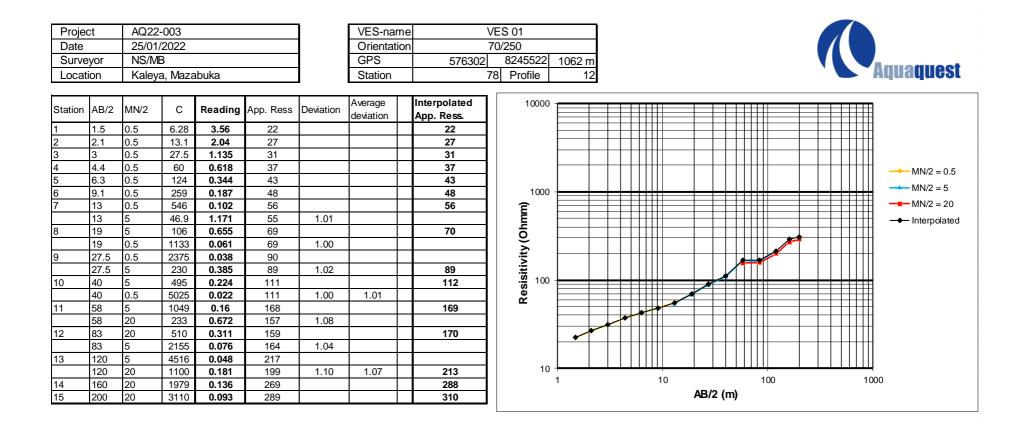


Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey




Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey





ANNEX II – GEOPHYSICAL SURVEY RESULTS – VERTICAL ELECTRICAL SOUNDINGS (VES)

ID	VES	UTMX	UTMY	PROFILE	SITE
1	VES 01	576302	8245522	12	78
2	VES 02	576212	8245943	13	88
3	VES 03	578029	8243109	15	96
4	VES 04	578082	8243716	14	91
5	VES 05	578178	8243722	14	92
6	VES 06	577578	8242756	8	55
7	VES 07	577665	8242864	8	54
8	VES 08	577250	8242347	8	60
9	VES 09	577443	8242118	7	41
10	VES 10	577600	8242316	7	44
11	VES 11	577948	8242758	7	51
12	VES 12	577933	8242883	10	68
13	VES 13	578198	8242642	5	33
14	VES 14	578368	8242862	5	34
15	VES 15	578743	8242159	2	9
16	VES 16	578687	8242087	2	10
17	VES 17	579096	8242596	2	7
18	VES 18	576234	8245639	12	79
19	VES 19	576177	8245737	12	80
20	VES 20	576293	8245795	13	87
21	VES 21	576431	8245552	13	84
22	VES 22	579122	8242125	1	1
23	VES 23	579278	8242318	1	3
24	VES 24	579370	8241894	3	15
25	VES 25	579899	8241992	4	16
26	VES 26	579671	8241645	4	19
27	VES 27	577759	8241407	9	61
28	VES 28	578078	8241828	9	66
29	VES 29	578702	8242595	6	39
30	VES 30	577531	8242958	11	72

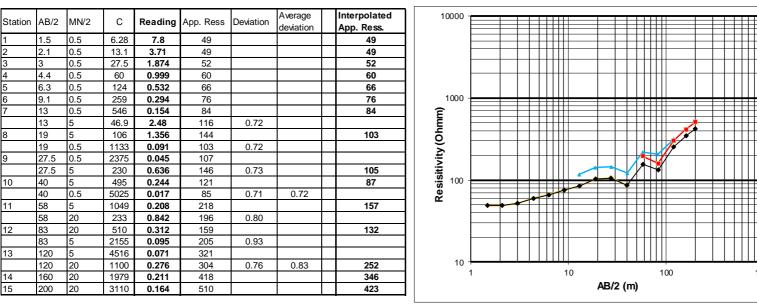
Project	AQ22-003	VES-name	
Date	25/01/2022	Orientation	
Surveyor	NS/MB	GPS	576
Location	Kaleya, Mazabuka	Station	

```	VE	S 02	
	60,	/240	
576212		8245943	1066 m
5	88	Profile	13
		60,	60/240 576212 8245943



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average	Interpolated	10000 -												∄		
				_			deviation	App. Ress.															
1		0.5	6.28	3.42	21			21		-				-							H		
2		0.5	13.1	1.833	24			24															
-		0.5	27.5	1.048	29			29															
4	4.4	0.5	60	0.591	35			35													11	 1/2 = 0.5	, I.
5	6.3	0.5	124	0.368	46			46															
6	9.1	0.5	259	0.232	60			60	1000 -					_							#1	N/Z = 5	
7	13	0.5	546	0.156	85			85	Ê												Ħ	 1/2 = 20	
	13	5	46.9	1.79	84	1.01			3										I		Ŧ	 erpolate	d
8	19	5	106	1.167	124			121	<u>ନ</u>										<b>†</b>		+1		· .
	19	0.5	1133	0.108	122	0.99			l e									<u> </u>					
9	27.5	0.5	2375	0.072	171				it							111					+1		
	27.5	5	230	0.774	178	0.96	1	175	Resisitivity (Ohmm)														
	40	5	495	0.434	215	1	1	211	. <u></u>					4							+		
	40	0.5	5025	0.041	206	0.96	0.98		e e	-											#		
11	58	5	1049	0.235	247			242	L CE												#		1
		20	233	1.303	304	0.80															+1		1
		20	510	0.611	312	0.00		234													+1		1
	83	5	2155	0.114	246	0.77					┣───	+++	+++	_		+++					 		1
13	120	5	4516	0.064	289	0.11																	1
15		20	1100	0.376	414	0.69	0.75	311	10 -				Щ				Щ				Ц		
14		20	1979	0.251	414	0.09	0.75	373		1			10				10	0			1000		1
		20	3110	0.251	497 554			416						AB/	/2 (m	n)							
10	200	20	3110	0.170	554			410							- (	,							
1	1	1	1									1		1		1		1		1			

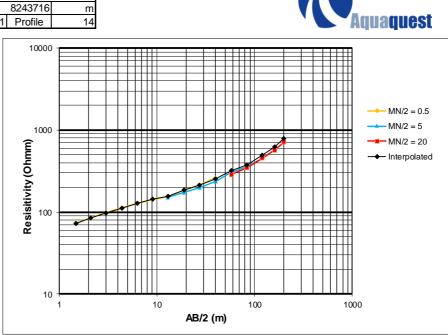
Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey


#### Aquaquest Ltd. - Project No. AQ22-003

Aquaquest

---- MN/2 = 5

---- Interpolated


Project	AQ22-003	VES-name	VE	S 03	
Date	25/01/2022	Orientation	31(	0/130	
Surveyor	NS/MB	GPS	578029	8243109	1088 m
Location	Kaleya, Mazabuka	Station	96	Profile	15



		_				
Project	AQ22-003		VES-name	VE	S 04	
Date	25/01/2022		Orientation	1(	)/190	
Surveyor	NS/MB		GPS	578082	8243716	m
Location	Kaleya, Mazabuka		Station	91	Profile	14



10	Interpolated App. Ress.	Average deviation	Deviation	App. Ress	Reading	С	MN/2	AB/2	Station
	73			73	11.61	6.28	0.5	1.5	1
	85			85	6.46	13.1	0.5	2.1	2
	98			98	3.57	27.5	0.5	3	3
	113			113	1.878	60	0.5	4.4	4
	127			127	1.028	124	0.5	6.3	5
1	143			143	0.553	259	0.5	9.1	6
Ê	156			156	0.285	546	0.5	13	7
Ē			1.03	151	3.22	46.9	5	13	
Resisitivity (Ohmm)	185			174	1.642	106	5	19	8
Š			1.06	185	0.163	1133	0.5	19	
÷.				214	0.09	2375	0.5	27.5	9
iti	211		1.08	198	0.863	230	5	27.5	
sis	255			239	0.483	495	5	40	10
e e		1.07	1.09	261	0.052	5025	0.5	40	
<b>–</b>	323			303	0.289	1049	5	58	11
			1.13	286	1.227	233	20	58	
	378			344	0.674	510	20	83	12
			1.10	356	0.165	2155	5	83	
				452	0.1	4516	5	120	13
	497	1.10	1.06	452	0.411	1100	20	120	
	622			566	0.286	1979	20	160	14
	782			712	0.229	3110	20	200	15



Proje	ct	AQ22	-003			1	VES-name		VES 05									
Date		25/01/	2022				Orientation		10/190									
Surve	yor	NS/M	3				GPS	578178	8243	722	m							
Locat	ion	Kaleya	a. Maza	abuka			Station		92 Prof	ile	14							<b>lquaquest</b>
			1			3												
o:	4.5./0		0			<b>D</b> :	Average	Interpolated	1	оооо _т								
Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	•	App. Ress.										
1	1.5	0.5	6.28	5.92	37			37										
2	2.1	0.5	13.1	2.22	29			29									+++++	
3	3	0.5	27.5	1.538	42			42										
4	4.4	0.5	60	0.809	49			49										→ MN/2 = 0.5
5	6.3	0.5	124	0.271	34			34										
6	9.1	0.5	259	0.134	35			35		1000 -								<u>→</u> MN/2 = 5
7	13	0.5	546	0.082	45			45	E I							•		— <b>■</b> — MN/2 = 20
	13	5	46.9	1.381	65	0.69			Ē									Interpolated
8	19	5	106	0.972	103			69	6									
	19	0.5	1133	0.063	71	0.69								1/11				
9	27.5	0.5	2375	0.044	105				< it					/				
	27.5	5	230	0.704	162	0.65		108	siti –									
10	40	5	495	0.603	298			199	Sis	100 -								
	40	0.5	5025	0.038	191	0.64	0.67		Resisitivity (Ohmm)				<b>X</b> +					
11	58	5	1049	0.439	461			307										
	58	20	233	2	466	0.66												
12	83	20	510	1.218	621			407										
	83	5	2155	0.275	593	0.64												
13	120	5	4516	0.134	605					10								
	120	20	1100	0.548	603	0.67	0.66	395		10 -		10			100		100	0
14	160	20	1979	0.411	813			533				.0	AD /2	(m)	100		100	•
15	200	20	3110	0.352	1095			717					AB/2	(iii)				

						1	1/50		1/50.00														
Proje		AQ22					VES-name		VES 06														
Date		25/01/	/2022				Orientation	1	160/340									1					
Surv	eyor	NS/M	В				GPS	577578	8242	756	1074 m								V				
Loca		Kalev	a, Maza	abuka			Station		55 Prof	file	8											quaques	at –
2000		1 10.10 /				1	Clairen				J											dandanoo	
		1	1		1	I	Average	Interpolated	4	0000										-			
Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	deviation	App. Ress.	· ·	0000								—	=	<del>1111</del>	∄		
4	1.5	0.5	6.28	2.08	13		ueviation	13										—	++	+++	Ħ		
1		0.5		1.128	15		ł – – ł –	15											$\square$	$\pm$	1		
2	2.1		13.1	-	15			15						_					$\vdash$	++++	4		
3	3	0.5	27.5	0.641				-															
4	4.4	0.5	60	0.407	24			24														→ MN/2 = 0.	5
5	6.3	0.5	124	0.258	32			32														<u>→</u> MN/2 = 5	
6	9.1	0.5	259	0.15	39			39		1000								=	ŧ		#		
7	13	0.5	546	0.071	39			39	E E	•								_				<b>——</b> MN/2 = 20	1
	13	5	46.9	0.878	41	0.94			E E										++		+	- Interpolate	эd
8	19	5	106	0.57	60			54	<u></u> б									*			Ħ		
	19	0.5	1133	0.049	56	0.92				·							×	/			П		
9	27.5	0.5	2375	0.028	67				j;									-		++++	Ħ		
	27.5	5	230	0.334	77	0.87		69	Resisitivity (Ohmm)														
10	40	5	495	0.204	101			90	sis	100								+	╞╪	╈╪╪╪╪	╡		
	40	0.5	5025	0.017	85	0.85	0.89		ie l					1	1			+	$\mp$		#		
11	58	5	1049	0.124	130		1 1	116	L L L									—	$\square$	++++	Ħ		
	58	20	233	0.388	90	1.28							╞┼═╱╴					-	++	++++	+1		
12	83	20	510	0.191	97			135													11		
	83	5	2155	0.069	149	1.36								+		$\left  \right $		+-	$\vdash$	++++	+		
13	120	5	4516	0.041	185																		
	120	20	1100	0.099	109	1.52	1.39	151		10	ļ		Ц				Ц		<u> </u>		Щ		
14	160	20	1979	0.088	174			242			1		10				100			1	1000	)	
45	000	20	0440		0.40	1	+ +	007						ΔR/2	(m)								

AB/2 (m)

0.078

Project	AQ22-003	VES-name	١	/ES 07	
Date	25/01/2022	Orientation	1	60/340	
Surveyor	NS/MB	GPS	577665	8242864	1075 m
Location	Kaleya, Mazabuka	Station	5	4 Profile	8

AB/2

1.5

2.1

3 4.4

6.3

9.1

13

13

19

19

27.5

27.5

40

40

58

58

83

83

120

120

160

200

10

11

12

13

14

15

Station

MN/2

0.5

0.5 0.5

0.5

0.5

0.5

0.5

5

5

0.5

0.5

5

5

5

20

20

5

5

20

20

20

0.5

С

6.28

13.1

27.5

60

124

259

546

46.9

106

1133

2375

230

495

5025

1049

233

510

2155

4516

1100

1979

3110

Reading

1.842

1.178

0.699

0.395

0.218

0.119

0.06

0.842

0.386

0.029

0.014

0.18

0.103

0.008

0.047

0.18

0.092

0.024

0.017

0.066

0.051

0.045

App. Ress

12

15

19

24

27

31

33

39

41

33

33

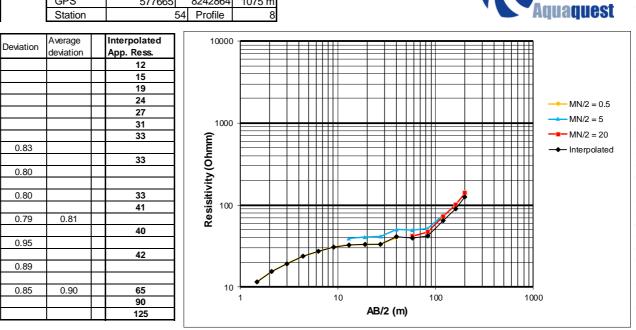
41

51

40

49

42


47

52

77

73

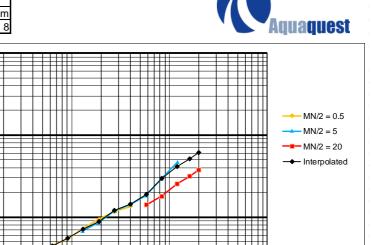
101



Project	AQ22-003	VES-name	١	/ES 08	
Date	27/01/2022	Orientation	3	30/150	
Surveyor	NS/MB	GPS	577250	8242347	m
Location	Kaleya, Mazabuka	Station	6	0 Profile	8

10000

1000


Resisitivity (Ohmm)

10

1

10

AB/2 (m)



100

Ctation	A D /O	MANI/O	С	Deeding		Deviation	Average	Interpolated
Station	AB/2	MN/2	C	Reading	App. Ress	Deviation	deviation	App. Ress.
1	1.5	0.5	6.28	2.28	14			14
2	2.1	0.5	13.1	1.564	20			20
3	3	0.5	27.5	1.03	28			28
4	4.4	0.5	60	0.61	37			37
5	6.3	0.5	124	0.36	45			45
6	9.1	0.5	259	0.213	55			55
7	13	0.5	546	0.131	72			72
	13	5	46.9	1.431	67	1.07		
8	19	5	106	0.812	86			88
	19	0.5	1133	0.083	94	1.09		
9	27.5	0.5	2375	0.049	116			
	27.5	5	230	0.515	118	0.98		121
10	40	5	495	0.286	142			145
	40	0.5	5025	0.027	136	0.96	1.02	
11	58	5	1049	0.176	185			189
	58	20	233	0.6	140	1.35		
12	83	20	510	0.353	180			295
	83	5	2155	0.136	293	1.67		
13	120	5	4516	0.104	470			
	120	20	1100	0.232	255	1.89	1.64	417
14	160	20	1979	0.159	315			515
15	200	20	3110	0.121	376			616

Proje	ct	AQ22	-003			1	VES-nam	е	VES 09								
Date		27/01/	2022				Orientatio	n	160/340								
Surve	yor	NS/M	3				GPS	577443	8242118	m							
Locat		Kaleva	a, Maza	abuka			Station		41 Profile	7							quaquest
			.,			1				-							daadaoor
			-				Average	Interpolated	10000						11	 	
Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	deviation	App. Ress.									
1	1.5	0.5	6.28	1.642	10			10									
2	2.1	0.5	13.1	1.287	17			17								++++	
3	3	0.5	27.5	0.801	22			22							11		
4	4.4	0.5	60	0.462	28			28								++++	
5	6.3	0.5	124	0.285	35			35									
6	9.1	0.5	259	0.165	43			43	1000								<u>→</u> MN/2 = 5
7	13	0.5	546	0.088	48			48	<u></u>								— <b>■</b> — MN/2 = 20
	13	5	46.9	1.282	60	0.80			Resistivity (Ohmm)								Interpolated
8	19	5	106	0.741	79			63									
	19	0.5	1133	0.056	63	0.81									H		
9	27.5	0.5	2375	0.036	86				, it								
	27.5	5	230	0.472	109	0.79		87	j.					<u>n II</u>			
10	40	5	495	0.295	146			118	⁵ 300 100								
	40	0.5	5025	0.024	121	0.83	0.81		Se l								
11	58	5	1049	0.188	197			159			+ + + + + + +						
	58	20	233	0.871	203	0.78											
12	83	20	510	0.502	256			227									
	83	5	2155	0.138	297	0.94											
13	120	5	4516	0.085	384												
	120	20	1100	0.299	329	0.94	0.89	291	10	1		10			100	 100	0
14	160	20	1979	0.207	410			363		I					100	100	U
15	200	20	3110	0.161	501			443	<u> </u>			Ab	3/2 (m)				

Project	AQ22-003	]	VES-name	V	ES 10	
Date	27/01/2022		Orientation	10	60/340	
Surveyor	NS/MB		GPS	577600	8242316	m
Location	Kaleya, Mazabuka		Station	4	4 Profile	7



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000 -		
1	1.5	0.5	6.28	2.3	14			14			
2	2.1	0.5	13.1	1.454	19			19			
3	3	0.5	27.5	0.912	25			25			
4	4.4	0.5	60	0.554	33			33			→ MN/2 =
5	6.3	0.5	124	0.337	42			42			
6	9.1	0.5	259	0.198	51			51	1000 -		<u>→</u> MN/2 =
7	13	0.5	546	0.112	61			61	Ê		<b></b> MN/2 =
	13	5	46.9	1.461	69	0.89			E I		- Interpola
8	19	5	106	0.843	89			76	Resisitivity (Ohmm)		
	19	0.5	1133	0.068	77	0.86			Š		
9	27.5	0.5	2375	0.04	95				, it		
	27.5	5	230	0.495	114	0.83		97	iti		
10	40	5	495	0.281	139			119	- 100 - Sig 100 -		
	40	0.5	5025	0.023	116	0.83	0.85		Şe		
11	58	5	1049	0.169	177			152	<u> </u>		
	58	20	233	0.749	175	0.87					
12	83	20	510	0.474	242			203			
	83	5	2155	0.109	235	0.83					
13	120	5	4516	0.07	316					≪	
	120	20	1100	0.3	330	0.82	0.84	277	10 -		
14	160	20	1979	0.197	390			327	1	10 100 1000	
15	200	20	3110	0.128	398			334		AB/2 (m)	

Project	AQ22-003		VES-name	VE	S 11	
Date	27/01/2022		Orientation	16	0/340	
Surveyor	NS/MB		GPS	577948	8242758	m
Location	Kaleya, Mazabuka		Station	51	Profile	7



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000 -												₽	
1	1.5	0.5	6.28	1.683	11			11													7	
2	2.1	0.5	13.1	0.963	13			13													H	
3	3	0.5	27.5	0.52	14			14				Ħ									11	
1	4.4	0.5	60	0.272	16			16			+++	$\mathbb{H}$				+++	+++			+++	+1	$\longrightarrow$ MN/2 = 0.
5	6.3	0.5	124	0.147	18			18														
6	9.1	0.5	259	0.084	22			22	1000 -			╘┼┼╴									#	<u>→</u> MN/2 = 5
7	13	0.5	546	0.046	25			25	Ê												Ħ	<b>———</b> MN/2 = 2
	13	5	46.9	0.574	27	0.93			Ē			H		_							Ŧ	Interpola
3	19	5	106	0.297	31			29	Resisitivity (Ohmm)			H									+1	
	19	0.5	1133	0.026	29	0.94			l ž			Ш									1	
9	27.5	0.5	2375	0.014	33				jt.												Н	
	27.5	5	230	0.156	36	0.93		33	iti													
10	40	5	495	0.088	44			40	. <u></u> . 100 -												#	
	40	0.5	5025	0.008	40	0.92	0.93		e e									*			$\pm$	
11	58	5	1049	0.051	53			50	- <b>-</b>			$\mathbb{H}$		+ +						+++	+1	
	58	20	233	0.258	60	0.83															1	
12	83	20	510	0.149	76			64													П	
	83	5	2155	0.031	67	0.82					4										11	
13	120	5	4516	0.017	77						111											
	120	20	1100	0.075	83	0.87	0.84	69	10 -	<b>-</b>			-								<b></b>	
14	160	20	1979	0.056	111			93				1	0			_	10	0			1000	
15	200	20	3110	0.045	140			117						AB/2	2 (m)	)						

Project	AQ22-003	VES-name	l l	/ES 12	
Date	27/01/2022	Orientation	:	30/210	
Surveyor	NS/MB	GPS	577933	8242883	1074 m
Location	Kaleya, Mazabuka	Station	(	68 Profile	10



Station	AB/2	MN/2	С	Reading	App. Ress		Average deviation	Interp App. F		10000 -											
1	1.5	0.5	6.28	3.4	21				21												
2	2.1	0.5	13.1	1.662	22				22												
3	3	0.5	27.5	0.779	21				21												
4	4.4	0.5	60	0.358	21				21		 +++	++++			+++				++++		= 0.5
5	6.3	0.5	124	0.178	22				22												
6	9.1	0.5	259	0.089	23				23	1000 -											= 5
7	13	0.5	546	0.044	24				24	Ê										<b>—=</b> — MN/2	. = 20
	13	5	46.9	0.631	30	0.81				sisitivity (Ohmm)								_			olate
8	19	5	106	0.306	32				27	– Ч											
	19	0.5	1133	0.024	27	0.84															
9	27.5	0.5	2375	0.013	31					÷.											
	27.5	5	230	0.158	36	0.85			30	iti											
10	40	5	495	0.087	43				36	- 100 - SS								-	++++		
	40	0.5	5025	0.007	35	0.82	0.83			Re											
11	58	5	1049	0.057	60				50	_ <b>-</b>		+++				▞₹					
	58	20	233	0.244	57	0.87									*						
12	83	20	510	0.142	72				56												
	83	5	2155	0.03	65	0.74						ŤĦ									
13	120	5	4516	0.019	86																
	120	20	1100	0.091	100	0.71	0.77		78	10 -			+				4				
14	160	20	1979	0.06	119				92				10			1	100		1(	000	
15	200	20	3110	0.038	118				92				4	AB/2	(m)						

Project	AQ22-003	VES-name		VES 13					
Date	27/01/2022	Orientation		310/130					
Surveyor	NS/MB	GPS	578198	8242642	1073 m				
Location	Kaleya, Mazabuka	Station		33 Profile	5				



04-4			0	Desident		Deviation	Average	Interpolated	10000 -									
Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	deviation	App. Ress.										
1	1.5	0.5	6.28	1.698	11			11	<b>1</b>   –					$\left[ \right]$			Ħ	
2	2.1	0.5	13.1	0.84	11			11	]  ⊢								H	
3	3	0.5	27.5	0.466	13			13	]								H	
4	4.4	0.5	60	0.243	15			15	]								H	
5	6.3	0.5	124	0.129	16			16										
6	9.1	0.5	259	0.073	19			19	1000 -								H	MN
7	13	0.5	546	0.043	23			23	Ê								ш	<b>——</b> MN
	13	5	46.9	0.57	27	0.88			sisitivity (Ohmm)								H	
8	19	5	106	0.309	33			28	<u>ାର</u> 🗆									
	19	0.5	1133	0.025	28	0.86			Š I						/	•		
9	27.5	0.5	2375	0.013	31				i ii									
	27.5	5	230	0.157	36	0.86		31	i i i i i i i i i i i i i i i i i i i									
10	40	5	495	0.093	46			40	¹⁰⁰									
	40	0.5	5025	0.008	40	0.87	0.87		l ä									
11	58	5	1049	0.055	58			50	1 - E					r III				
	58	20	233	0.296	69	0.73												
12	83	20	510	0.185	94			73										
	83	5	2155	0.039	84	0.77					1						Ш	
13	120	5	4516	0.028	126					7 [1]								
	120	20	1100	0.123	135	0.81	0.77	104	10 +		10	•			00	·I	 1000	
14	160	20	1979	0.095	188			145			10			1	00		1000	1
15	200	20	3110	0.082	255			196				AB/2	(m)					

Project	AQ22-003	VES-name	,	/ES 14	
Date	27/01/2022	Orientation		310/130	
Surveyor	NS/MB	GPS	578368	8242862	1078 m
Location	Kaleya, Mazabuka	Station		34 Profile	5



Station	AB/2	MN/2	С	Reading	App. Ress		Average deviation	Interpolated App. Ress.	10000												
1	1.5	0.5	6.28	2.76	17			17													
2	2.1	0.5	13.1	1.67	22			22													
3	3	0.5	27.5	0.946	26			26													
4	4.4	0.5	60	0.533	32			32										++		-	$\longrightarrow$ MN/2 = 0.
5	6.3	0.5	124	0.326	40			40													
6	9.1	0.5	259	0.211	55			55	1000					_							<u>→</u> MN/2 = 5
7	13	0.5	546	0.132	72			72	Ê												<b>——</b> MN/2 = 2
	13	5	46.9	1.413	66	1.09			Ē							+++		 ++	+++	-	Interpolat
8	19	5	106	0.809	86			91	sisitivity (Ohmm)									Ħ			·
	19	0.5	1133	0.08	91	1.06															
9	27.5	0.5	2375	0.05	119				j j							*					
	27.5	5	230	0.491	113	1.05		120	ji ji								<b>T</b> .				
10	40	5	495	0.281	139			148			Ħ		/	4	++						
	40	0.5	5025	0.029	146	1.05	1.06		Re				×								
11	58	5	1049	0.161	169			179	_ <b>_</b>					-						-	
	58	20	233	0.768	179	1.00					1										
12	83	20	510	0.388	198			195		· · · ·											
	83	5	2155	0.085	183	0.98				•											
13	120	5	4516	0.032	145																
	120	20	1100	0.144	158	0.97	0.98	156	10	· · · · ·						 				4	
14	160	20	1979	0.085	168			165		1		10				10	U		1	000	
15	200	20	3110	0.069	215			211						AB/2	? (m)						

Project	AQ22-003	VES-name	١	/ES 15	
Date	27/01/2022	Orientation	3	20/140	
Surveyor	NS/MB	GPS	578743	8242159	1074 m
Location	Kaleya, Mazabuka	Station		9 Profile	2

Deviation

0.97

0.95

0.94

0.88

0.90

0.87

0.85

AB/2

1.5

2.1

3 4.4

6.3

9.1

13

13

19

19

27.5

27.5

40

40

58

58

83

83

120

120

160

200

10

11

12

13

14

15

Station

MN/2

0.5

0.5 0.5

0.5

0.5

0.5

0.5

5

5

0.5

0.5

5

5

5

20

20

5

5

20

20

20

0.5

С

6.28

13.1

27.5

60

124

259

546

46.9

106

1133

2375

230

495

5025

1049

233

510

2155

4516

1100

1979

3110

Reading

1.891

1.107

0.597

0.328

0.193

0.124

0.077

0.923

0.538

0.048

0.028

0.306

0.173

0.015

0.088

0.411

0.277

0.061

0.036

0.163

0.127

0.108

App. Ress

12

15

16

20

24

32

42

43

57

54

67 70

86

75

92

96

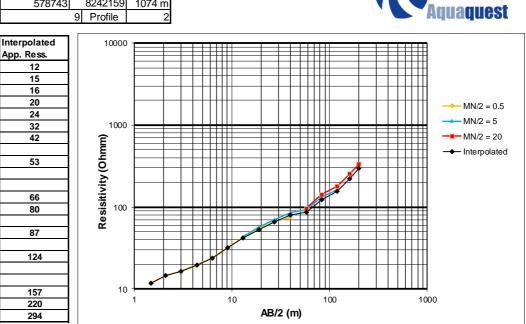
141

131

163

179

251


336

Average

deviation

0.94

0.88



Project	AQ22-003	VES-name	۱. ۱	/ES 16	
Date	27/01/2022	Orientation	3	20/140	
Surveyor	NS/MB	GPS	578687	8242087	1074 m
Location	Kaleya, Mazabuka	Station		0 Profile	2



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000 -							
1	1.5	0.5	6.28	1.678	11			11					++++			
2	2.1	0.5	13.1	1.03	13			13			++++++				++++	
3	3	0.5	27.5	0.57	16			16								
4	4.4	0.5	60	0.32	19			19			++++++		++++			→ MN/2 = 0.5
5	6.3	0.5	124	0.19	24			24								
6	9.1	0.5	259	0.112	29			29	1000 -							<u>→</u> MN/2 = 5
7	13	0.5	546	0.065	35			35	<u> </u>							<b>——</b> MN/2 = 20
	13	5	46.9	0.963	45	0.79			3							Interpolate
8	19	5	106	0.555	59			45	sisitivity (Ohmm)						++++	
	19	0.5	1133	0.04	45	0.77			1 3							
9	27.5	0.5	2375	0.025	59				l ť		++++++					
	27.5	5	230	0.337	78	0.77		60	ji ji ji					H		
10	40	5	495	0.202	100			77	- 100 ·							
	40	0.5	5025	0.015	75	0.75	0.77		Re							
11	58	5	1049	0.121	127			98								
	58	20	233	0.503	117	0.83										
12	83	20	510	0.296	151			122								
	83	5	2155	0.074	159	0.81									++++	
13	120	5	4516	0.049	221				]							
	120	20	1100	0.198	218	0.78	0.81	176	10 -					4		-
14	160	20	1979	0.141	279			226		1	10			100	100	U
15	200	20	3110	0.106	330			267	<b>1</b>			AB/2 (n	ר)			

Project	AQ22-003	VES-name	V	'ES 17	
Date	27/01/2022	Orientation	1	50/330	
Surveyor	NS/MB	GPS	579096	8242596	1081 m
Location	Kaleya, Mazabuka	Station		7 Profile	2



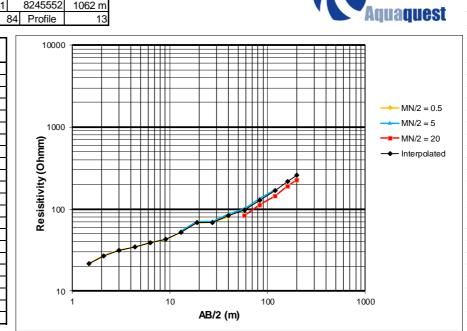
Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpo App. R		10000 -														₽	
1	1.5	0.5	6.28	2.22	14				14															Ħ	
2	2.1	0.5	13.1	1.096	14				14															H	
3	3	0.5	27.5	0.576	16				16															11	
4	4.4	0.5	60	0.323	19				19															H	
5	6.3	0.5	124	0.196	24				24																
6	9.1	0.5	259	0.123	32				32	1000 -						_								Ħ	<u>→</u> MN/2 = 5
7	13	0.5	546	0.078	43				43	Ê														Ħ	<b>——</b> MN/2 = 20
	13	5	46.9	0.979	46	0.93				sisitivity (Ohmm)								_				_		H	- Interpolate
8	19	5	106	0.612	65				59	<u></u>										-	•			Ħ	•
	19	0.5	1133	0.052	59	0.91				Š														Π	
9	27.5	0.5	2375	0.037	88					i i														H	
	27.5	5	230	0.425	98	0.90			39	iti															
10	40	5	495	0.262	130			1	18	- 100 -		++					4					_	+++	Ħ	
	40	0.5	5025	0.023	116	0.89	0.91			Re						/								H	
11	58	5	1049	0.157	165			1	49	<b>–</b>														H	
	58	20	233	0.664	155	0.96									~										
12	83	20	510	0.388	198			1	85																
	83	5	2155	0.094	203	0.93							f											Ħ	
13	120	5	4516	0.056	253						• •														
	120	20	1100	0.227	250	0.92	0.94	2	34	10 -														<b></b>	
14	160	20	1979	0.156	309			2	89					10					10	J				1000	
15	200	20	3110	0.112	348			3	26							AB/2	2 (m)	)							

Proje	ct	AQ22	-003			1	VES-name		VES	18		٦													
Date		28/01/	2022			1	Orientation		70/2	50															
Surve	yor	NS/M	3			1	GPS	576234	4 8	3245639	1056	m									V				
Locat	ion	Kaley	a, Maza	abuka			Station		79	Profile	1	12											A	quaque	<b>SI</b>
								-																	
Station	ΔB/2	MN/2	с	Reading	App. Ress	Deviation	Average	Interpolated		10000			ŦŦ		-					-		F F F	Ħ		
Station			-	-		Deviation	deviation	App. Ress.																	
1		0.5	6.28	1.869	12			12				+ $+$ $+$	++				$\left  \right $			_		+++	+++		
2	2.1	0.5	13.1	1.095	14			14															Π		
3	3	0.5	27.5	0.694	19			19																	
4		0.5	60	0.373	22			22																<u>→</u> MN/2 =	0.5
5		0.5	124	0.216	27			27																<u> </u>	-
6	9.1	0.5	259	0.116	30			30		1000					_										
7	13	0.5	546	0.065	35			35		Ê										_				<b>—=</b> — MN/2 =	20
	13	5	46.9	0.934	44	0.81				Ē			++				$\left\{ + \right\}$			1			++1	- Interpol	ated
8	19	5	106	0.513	54			44		ò									<b>_</b>	4					
	19	0.5	1133	0.038	43	0.79				ž									×	1					
9	27.5	0.5	2375	0.025	59					<u> </u>													Ħ		
	27.5	5	230	0.321	74	0.80		60		Ē								7	1						
10	40	5	495	0.170	84			68		. <b>s</b> 100										-					
	40	0.5	5025	0.014	70	0.84	0.81			<b>Resisitivity (Ohmm)</b> 00						-	¥			_					
11	58	5	1049	0.127	133			108		-															
	58	20	233	0.554	129	0.84									•										
12	83	20	510	0.326	166			126					୶∤⋪	Πſ											
	83	5	2155	0.068	147	0.71																	Ш		
13	120	5	4516	0.044	199						-	7													
	120	20	1100	0.205	226	0.71	0.76	170		10				40									4000		
14	160	20	1979	0.164	325			245			1			10	-	- 10		1	00				1000	J	
15	200	20	3110	0.137	426			322							A	B/2 (	(m)								

Project	AQ22-003	VES-name	١	VES 19	
Date	28/01/2022	Orientation		80/260	
Surveyor	NS/MB	GPS	576177	8245737	1054 m
Location	Kaleya, Mazabuka	Station		30 Profile	12



Station	A B /2	MN/2	С	Pooding	App. Ress	Doviation	Average	Interpolated	10000								Ē	
Station	AD/Z	IVII V/Z	C	Reading	App. Ress	Deviation	deviation	App. Ress.										
1	1.5	0.5	6.28	1.777	11			11										
2	2.1	0.5	13.1	1.025	13			13										
3	3	0.5	27.5	0.51	14			14										
4	4.4	0.5	60	0.263	16			16						++++				
5	6.3	0.5	124	0.143	18			18										
6	9.1	0.5	259	0.076	20			20	1000 ·						_			
7	13	0.5	546	0.042	23			23	Ê									<b>——</b> MN/2 = 2
	13	5	46.9	0.545	26	0.90			Ē				++	++++			++++	Interpola
8	19	5	106	0.284	30			25	<u> </u>									
	19	0.5	1133	0.021	24	0.79			sisitivity (Ohmm)									
9	27.5	0.5	2375	0.013	31				j j									
	27.5	5	230	0.162	37	0.83		31	iti									
10	40	5	495	0.104	51			42	. 100 ·									
	40	0.5	5025	0.008	40	0.78	0.82		Re				×					
11	58	5	1049	0.067	70			58	_ <b>_</b>				7					
	58	20	233	0.27	63	0.92												
12	83	20	510	0.181	92			82										
	83	5	2155	0.046	99	0.89												
13	120	5	4516	0.03	135													
	120	20	1100	0.118	130	0.86	0.89	115	10	<b>▼</b>						 		•
14	160	20	1979	0.098	194			172			10			100			100	J
15	200	20	3110	0.071	221			196			A	B/2 (n	n)					


Project	AQ22-003	VES-name	l l	/ES 20	
Date	28/01/2022	Orientation		70/250	
Surveyor	NS/MB	GPS	576293	8245795	1058 m
Location	Kaleya, Mazabuka	Station	8	87 Profile	13



ation	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000 -								Ħ	₽
	1.5	0.5	6.28	1.619	10			10									##	Ħ
	2.1	0.5	13.1	0.899	12			12		++++				-+++			++	H
3	3	0.5	27.5	0.484	13			13		+ + + +							++	
	4.4	0.5	60	0.257	15			15		++++							++	+++
	6.3	0.5	124	0.138	17			17										
6	9.1	0.5	259	0.068	18			18	1000 -								╪╪	₩
7	13	0.5	546	0.033	18			18	2								++	Ħ
	13	5	46.9	0.495	23	0.78			Resisitivity (Ohmm)								++	
	19	5	106	0.238	25			19	<u>ч</u>								++	++
	19	0.5	1133	0.017	19	0.76												
,	27.5	0.5	2375	0.01	24				i ji –	++++	+++						++	++
	27.5	5	230	0.138	32	0.75		24	litiv							•		
0	40	5	495	0.081	40			30	- 00 l					╈			╪╪	Ħ
	40	0.5	5025	0.006	30	0.75	0.76		Se						~		$\pm$	
1	58	5	1049	0.045	47			36	<b>–</b>								++	
	58	20	233	0.22	51	0.70							1					
2	83	20	510	0.156	80			54										
	83	5	2155	0.032	69	0.66					╞							111
3	120	5	4516	0.02	90					<b>F</b>								
	120	20	1100	0.094	103	0.66	0.67	70	10 +									 
4	160	20	1979	0.06	119			80	1		10			1	00			100
15	200	20	3110	0.043	134			90				AB/2	(m)					

Project	AQ22-003	VES-name	١	/ES 21	
Date	28/01/2022	Orientation		70/250	
Surveyor	NS/MB	GPS	576431	8245552	1062 m
Location	Kaleya, Mazabuka	Station	8	84 Profile	13

Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.
1	1.5	0.5	6.28	3.46	22			22
2	2.1	0.5	13.1	2.06	27			27
3	3	0.5	27.5	1.141	31			31
4	4.4	0.5	60	0.571	34			34
5	6.3	0.5	124	0.314	39			39
6	9.1	0.5	259	0.165	43			43
7	13	0.5	546	0.096	52			52
	13	5	46.9	1.144	54	0.98		
8	19	5	106	0.666	71			68
	19	0.5	1133	0.06	68	0.96		
9	27.5	0.5	2375	0.029	69			
	27.5	5	230	0.308	71	0.97		68
10	40	5	495	0.175	87			83
	40	0.5	5025	0.016	80	0.93	0.96	
11	58	5	1049	0.096	101			97
	58	20	233	0.356	83	1.17		
12	83	20	510	0.22	112			129
	83	5	2155	0.062	134	1.14		
13	120	5	4516	0.038	172			
	120	20	1100	0.132	145	1.13	1.15	167
14	160	20	1979	0.096	190			218
15	200	20	3110	0.073	227			261



→ MN/2 = 0.5 → MN/2 = 5

→ MN/2 = 20 → Interpolated

Project	AQ22-003	VES-name	V	ES 22			
Date	28/01/2022	Orientation	33	330/150 122 8242125			
Surveyor	NS/MB	GPS	579122	8242125	1073 m		
Location	Kaleya, Mazabuka	Station	1	Profile	1		



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000								
1	1.5	0.5	6.28	2.86	18			18							-		#
2	2.1	0.5	13.1	1.522	20			20									
3	3	0.5	27.5	0.793	22			22									+
4	4.4	0.5	60	0.453	27			27							+		+-
5	6.3	0.5	124	0.263	33			33									
6	9.1	0.5	259	0.163	42			42	1000				-		+		#=
7	13	0.5	546	0.091	50			50	Ê								$\pm$
	13	5	46.9	1.171	55	0.90			Ē						-		
8	19	5	106	0.712	75			71	- K								
	19	0.5	1133	0.064	73	0.96			Š								1
9	27.5	0.5	2375	0.041	97												
	27.5	5	230	0.447	103	0.95		97	iti						1	1	
10	40	5	495	0.269	133			125	Resisitivity (Ohmm)						+		
	40	0.5	5025	0.025	126	0.94	0.94		Se				ſ				
11	58	5	1049	0.163	171			161	-						+		+
	58	20	233	0.665	155	1.04						T					
12	83	20	510	0.36	184			183									
	83	5	2155	0.09	194	0.99				•							+
13	120	5	4516	0.054	244												
	120	20	1100	0.215	237	0.97	1.00	236	10	· · · ·		4					400
14	160	20	1979	0.148	293			293		1		10					100
15	200	20	3110	0.102	317			317					AB/	2 (I	n)		

Project	AQ22-003	VES-name	V	ES 23	
Date	28/01/2022	Orientation	33	30/150	
Surveyor	NS/MB	GPS	579278	8242318	1078 m
Location	Kaleya, Mazabuka	Station		3 Profile	1

Deviation

0.96

0.94

0.90

0.93

0.85

0.86

0.82

AB/2

1.5

2.1

3 4.4

6.3

9.1

13

13

19

19

27.5

27.5

40

40

58

58

83

83

120

120

160

200

10

11

12

13

14

15

Station

MN/2

0.5

0.5 0.5

0.5

0.5

0.5

0.5

5

5

0.5

0.5

5

5

5

20

20

5

5

20

20

20

0.5

С

6.28

13.1

27.5

60

124

259

546

46.9

106

1133

2375

230

495

5025

1049

233

510

2155

4516

1100

1979

3110

Reading

2.76

1.73

0.914

0.5

0.292

0.164

0.087

1.053

0.569

0.05

0.029

0.332

0.196

0.018

0.119

0.59

0.34

0.074

0.043

0.2

0.13

0.1

App. Ress

17

23

25

30

36

42

48

49

60

57

69 76

97

90

125

137

173

159

194

220

257

311

Average

deviation

0.93

0.84

Interpolated

17

23

25

30

36

42

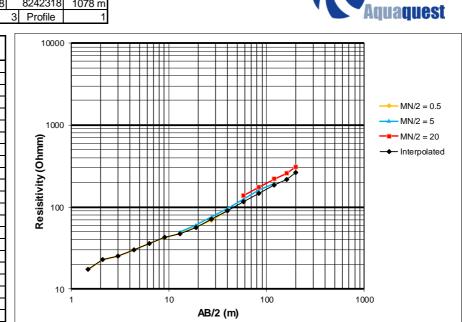
48

56

71

91

117


146

186

217

262

App. Ress.



Project	AQ22-003	VES-name	V	'ES 24			
Date	28/01/2022	Orientation	3	330/150			
Surveyor	NS/MB	GPS	579370	8241894	1069 m		
Location	Kaleya, Mazabuka	Station	1	5 Profile	3		



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	 Interpolated App. Ress.	1	0000 -											
1	1.5	0.5	6.28	2.29	14			14											$\square$	TTT -	
2	2.1	0.5	13.1	1.67	22			22											++++	HH	
3	3	0.5	27.5	1.042	29			29													
4	4.4	0.5	60	0.609	37			37								++++			++++		→ MN/2 = 0.5
5	6.3	0.5	124	0.364	45			45													
6	9.1	0.5	259	0.217	56			56		1000 -									╞╪╪╛	╞╪┿┫	MN/2 = 5
7	13	0.5	546	0.128	70			70	l î											FHI .	<b>——</b> MN/2 = 20
	13	5	46.9	1.413	66	1.05			Ē									-	+++		Interpolate
8	19	5	106	0.799	85			84	sisitivity (Ohmm)										++++		
	19	0.5	1133	0.074	84	0.99											~			TTT -	
9	27.5	0.5	2375	0.041	97				j;												
	27.5	5	230	0.432	99	0.98		99	ļţ												
10	40	5	495	0.264	131			130	Sis	100 -											
	40	0.5	5025	0.025	126	0.96	1.00		Re												
11	58	5	1049	0.165	173			172	_ <b>_</b>										+++	HHI.	
	58	20	233	0.789	184	0.94															
12	83	20	510	0.447	228			208													
	83	5	2155	0.097	209	0.91															
13	120	5	4516	0.064	289						•									(	
	120	20	1100	0.297	327	0.88	0.91	298		10 -											•
14	160	20	1979	0.2	396			361		1			10			10	U			100	J
15	200	20	3110	0.156	485			442						AB/2	(m)						

→ MN/2 = 0.5 → MN/2 = 5

—■— MN/2 = 20 —— Interpolated

Project	AQ22-003	VES-name	V	ES 25				
Date	28/01/2022	Orientation	3	330/150				
Surveyor	NS/MB	GPS	579899	8241992	1077 m			
Location	Kaleya, Mazabuka	Station	1	6 Profile	4			



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000 -										
1	1.5	0.5	6.28	4.21	26			26								_	H		$\square$
2	2.1	0.5	13.1	2.6	34			34											+ +
3	3	0.5	27.5	1.197	33			33											
4	4.4	0.5	60	0.522	31			31							-		H		+
5	6.3	0.5	124	0.239	30			30											
6	9.1	0.5	259	0.128	33			33	1000 -						_	+	╞┿╡	╈	╞──┤
7	13	0.5	546	0.075	41			41	Ê										
	13	5	46.9	0.946	44	0.92			Ē						_		H		
8	19	5	106	0.572	61			51	<u></u>								H		
	19	0.5	1133	0.049	56	0.92											П		
9	27.5	0.5	2375	0.032	76				i ii										<u>r  </u>
	27.5	5	230	0.366	84	0.90		71	ji ti										
10	40	5	495	0.25	124			104	Resisitivity (Ohmm)		-					#	Ħ		
	40	0.5	5025	0.015	75	0.61	0.84		Şe						$\nearrow$				
11	58	5	1049	0.157	165			138	<b>L</b>			+++			$^{\prime}$		$\square$		┼──┦
	58	20	233	0.631	147	0.94								~					
12	83	20	510	0.382	195			184		*									
	83	5	2155	0.099	213	0.92											H		++
13	120	5	4516	0.065	294												i		
	120	20	1100	0.227	250	0.98	0.95	236	10 -										+
14	160	20	1979	0.166	329			311					10					1	00
15	200	20	3110	0.114	355			336						1	AB/2	(m)	)		

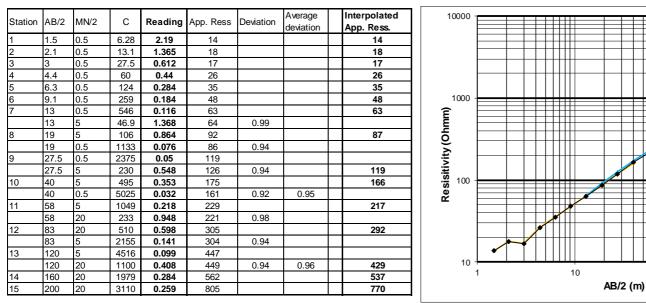
Project	AQ22-003	VES-name	۱. ۱	/ES 26			
Date	28/01/2022	Orientation		340/160			
Surveyor	NS/MB	GPS	579671	8241645	1075 m		
Location	Kaleya, Mazabuka	Station		9 Profile	4		



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	terpolated op. Ress.	10000 -										Ħ		Ħ	
1	1.5	0.5	6.28	3.19	20			20											$\mp$		Ħ	
2	2.1	0.5	13.1	2	26			26													H	
3	3	0.5	27.5	1.205	33			33													Ħ	
4	4.4	0.5	60	0.683	41			41								++			++		H	→ MN/2 = 0.5
5	6.3	0.5	124	0.383	47			47														
6	9.1	0.5	259	0.216	56			56	1000 -		+++								╪╪		Ħ	<u>→</u> MN/2 = 5
7	13	0.5	546	0.122	67			67	Ê										$\pm$		Ħ	— <b>■</b> — MN/2 = 20
	13	5	46.9	1.587	74	0.89			Resisitivity (Ohmm)										++		H	Interpolated
8	19	5	106	0.86	91			79	- 6												Ħ	
	19	0.5	1133	0.07	79	0.87			Š												Π	
9	27.5	0.5	2375	0.036	86											1					H	
	27.5	5	230	0.438	101	0.85		87	iti													
10	40	5	495	0.273	135			117	- 100 ·									_	++		Ħ	
	40	0.5	5025	0.023	116	0.86	0.87		Se la									_			H	
11	58	5	1049	0.17	178			155	-									_	++		H	
	58	20	233	0.696	162	0.95																
12		20	510	0.405	207			198														
	83	5	2155	0.105	226	0.95													++		Ħ	
13	120	5	4516	0.074	334																	
	120	20	1100	0.273	300	0.97	0.96	287	10 -								400				-	
14	160	20	1979	0.18	356			341				10					100			1	000	
15	200	20	3110	0.109	339			324					A	B/2	(m)							

Aquaquest

→ MN/2 = 5


____MN/2 = 20

---- Interpolated

1000

100

Project	AQ22-003	VES-name	١	'ES 27				
Date	29/01/2022	Orientation	1	160/340				
Surveyor	NS/MB	GPS	577759	8241407	1057 m			
Location	Kaleya, Mazabuka	Station	6	1 Profile	9			



#### Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey

Project	AQ22-003	VES-name	١	'ES 28				
Date	29/01/2022	Orientation	1	160/340				
Surveyor	NS/MB	GPS	578078	8241828	1067 m			
Location	Kaleya, Mazabuka	Station	6	6 Profile	9			

Deviation

0.94

0.89

0.96

0.88

1.20

1.01

1.00

AB/2

1.5

2.1

3 4.4

6.3

9.1

13

13

19

19

27.5

27.5

40

40

58

58

83

83

120

120

160

200

10

11

12

13

14

15

Station

MN/2

0.5

0.5

0.5

0.5

0.5

0.5

0.5

5

5

0.5

0.5

5

5

5

20

20

5

5

20

20

20

0.5

С

6.28

13.1

27.5

60

124

259

546

46.9

106

1133

2375

230

495

5025

1049

233

510

2155

4516

1100

1979

3110

Reading

1.541

1.08

0.707

0.451

0.294

0.192

0.12

1.489

0.837

0.07

0.041

0.441

0.277

0.024

0.149

0.512

0.464

0.121

0.083

0.314

0.219

0.159

App. Ress

10

14

19

27

36

50

66

70

89

79

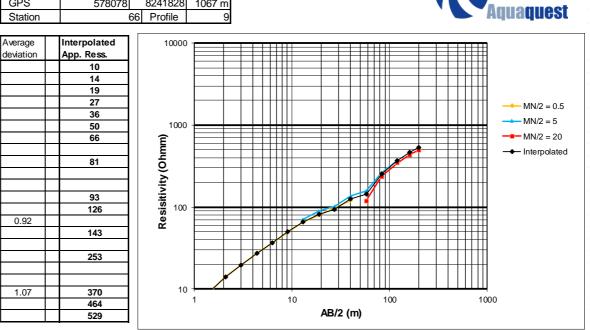
97 101

137

121

156

119


237

261

375

345

433



Project	AQ22-003	VES-name	V	'ES 29	
Date	29/01/2022	Orientation	1:	20/300	
Surveyor	NS/MB	GPS	578702	8242595	1080m
Location	Kaleya, Mazabuka	Station	3	9 Profile	6



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	nterpolated App. Ress.	10000 -									]
1	1.5	0.5	6.28	3.04	19			19									(TTT	-
2	2.1	0.5	13.1	1.722	23			23										
3	3	0.5	27.5	0.976	27			27										1
4	4.4	0.5	60	0.49	29			29									++++	
5	6.3	0.5	124	0.274	34			34									i	
6	9.1	0.5	259	0.161	42			42	1000 -		++++						╞╪╪╪╪	
7	13	0.5	546	0.095	52			52	Ê									<b>——</b> MN/2 =
	13	5	46.9	1.055	49	1.05			Resisitivity (Ohmm)								┟┼┼┼┼	Interpol
8	19	5	106	0.595	63			64	- 6									· ·
	19	0.5	1133	0.057	65	1.02			Š								ΠΠ	
9	27.5	0.5	2375	0.032	76				kit							~		
	27.5	5	230	0.325	75	1.02		76	it.								i	
10	40	5	495	0.168	83			84	<b>.</b>							_		
	40	0.5	5025	0.016	80	0.97	1.01		Re								┢╪╪╪╪╪	
11	58	5	1049	0.086	90			91										
	58	20	233	0.385	90	1.02											μШ	
12	83	20	510	0.231	118			118									i	
	83	5	2155	0.053	114	0.98											(TTT	1
13	120	5	4516	0.033	149												i	
	120	20	1100	0.136	150	1.01	1.00	150	10 -	· · · · ·	4	0			10	<u> </u>		+ 000
14	160	20	1979	0.088	174			175		I	ſ		<b>D</b> /0 /		10	U	10	000
15	200	20	3110	0.064	199			200				A	B/2 (r	m)				

#### Aquaquest Ltd. - Project No. AQ22-003

Project	AQ22-003
Date	29/01/2022
Surveyor	NS/MB
Location	Kaleya, Mazabuka

VES-name	VES 30							
Orientation	10/190							
GPS	577531 8242958 1076 m							
Station	7	2 Profile	11					



Station	AB/2	MN/2	С	Reading	App. Ress	Deviation	Average deviation	Interpolated App. Ress.	10000 -										
1	1.5	0.5	6.28	0.959	6			6								-		H	
2	2.1	0.5	13.1	0.511	7			7										H	
3	3	0.5	27.5	0.259	7			7										Ħ	
4	4.4	0.5	60	0.19	11			11										H	→ MN/2 = 0.5
5	6.3	0.5	124	0.108	13			13											
6	9.1	0.5	259	0.061	16			16	1000 -		++			++				Ħ	<u>→</u> MN/2 = 5
7	13	0.5	546	0.032	17			17	e (									H	<b>——</b> MN/2 = 20
	13	5	46.9	0.426	20	0.87			Ē									H	
3	19	5	106	0.221	23			20	Resisitivity (Ohmm)										
	19	0.5	1133	0.018	20	0.87			N (										
9	27.5	0.5	2375	0.01	24				vit									Ħ	
	27.5	5	230	0.122	28	0.85		24	iti							7			
10	40	5	495	0.071	35			30											
	40	0.5	5025	0.006	30	0.86	0.86		Se						 11 🌌				
11	58	5	1049	0.045	47			41	<b>–</b>		++					-		H	
	58	20	233	0.176	41	0.99								$\mathbf{X}$					
12	83	20	510	0.089	45			43						11					
	83	5	2155	0.022	47	0.90												Ш	
13		5	4516	0.014	63							T[]							
	120	20	1100	0.053	58	0.94	0.94	55	10 -	· · · ·		40			100			4000	
14	160	20	1979	0.05	99			93				10			100			1000	
15	200	20	3110	0.047	146			138					AB/2	(m)					

Kaleya Smallholders Company Ltd - Groundwater Assessment and Geophysical Survey

## **ANNEX III – RANKING AND LIST OF SITES**

### **Drilling Site Ranking**

ID	VES	UTMX	UTMY	PROFILE	SITE	<b>Combined Score</b>	Site Ranking
12	<b>VES 12</b>	577933	8242883	10	68	7.5	1
5	<b>VES 05</b>	578178	8243722	14	92	7.25	2
11	<b>VES 11</b>	577948	8242758	7	51	7.25	2
1	<b>VES 01</b>	576302	8245522	12	<b>78</b>	7	4
20	<b>VES 20</b>	576293	8245795	13	87	7	4
6	<b>VES 06</b>	577578	8242756	8	55	6.75	6
29	<b>VES 29</b>	<b>578702</b>	8242595	6	<b>39</b>	6.75	6
14	<b>VES 14</b>	<b>578368</b>	8242862	5	<b>34</b>	6.5	8
2	<b>VES 02</b>	576212	8245943	13	88	6	9
7	<b>VES 07</b>	577665	8242864	8	<b>54</b>	6	9
25	<b>VES 25</b>	579899	8241992	4	<b>16</b>	6	9
26	<b>VES 26</b>	579671	8241645	4	19	6	9
30	<b>VES 30</b>	577531	8242958	11	72	6	9
10	VES 10	577600	8242316	7	44	5.5	13
18	<b>VES 18</b>	576234	8245639	12	79	5.5	13
19	<b>VES 19</b>	576177	8245737	12	80	5.5	13
22	<b>VES 22</b>	579122	8242125	1	1	5.25	16
23	<b>VES 23</b>	579278	8242318	1	3	5.25	16
3	VES 03	578029	8243109	15	96	5	18
4	<b>VES 04</b>	578082	8243716	14	91	5	18
17	<b>VES 17</b>	579096	8242596	2	7	5	18
21	<b>VES 21</b>	576431	8245552	13	84	5	18
13	VES 13	578198	8242642	5	33	4.5	0
16	<b>VES 16</b>	578687	8242087	2	10	4.5	0
15	<b>VES 15</b>	578743	8242159	2	9	4.25	0
28	<b>VES 28</b>	578078	8241828	9	66	4.25	0
24	VES 24	579370	8241894	3	15	4	0
9	VES 09	577443	8242118	7	41	3.75	0
8	<b>VES 08</b>	577250	8242347	8	60	3.5	0
27	<b>VES 27</b>	577759	8241407	9	61	3	0

ID	UTMX	UTMY	SITE	PROFILE
1	579122	8242123	S01	P1
2	579186	8242203	S02	P1
3	579278	8242315	S03	P1
4	579326	8242370	S04	P1
5	579404	8242466	S05	P1

	-		_	
6	579179	8242701	S06	P2
7	579096	8242598	S07	P2
8	579038	8242527	S08	P2
9	578745	8242160	S09	P2
10	578686	8242088	S10	P2
11	579632	8242235	S11	P3
12	579572	8242162	S11A	P3
13	579544	8242122	S12	P3
14	579470	8242023	S13	P3
15	579428	8241967	S14	P3
16	579370	8241894	S15	P3
17	579965	8242089	S15A	P4
18	579901	8241992	S16	P4
19	579819	8241873	S17	P4
20	579687	8241676	S18	P4
21	579670	8241650	S19	P4
22	579618	8241571	S20	P4
23	579569	8241499	S21	P4
24	579449	8241322	S22	P4
25	579401	8241250	S23	P4
26	577551	8241793	S24	P5
27	577628	8241891	S25	P5
28	577731	8242028	S26	P5
29	577809	8242133	S27	P5
30	577946	8242313	S28	P5
31	578008	8242395	S29	P5
32	578041	8242437	S30	P5
33	578070	8242476	S31	P5
34	578096	8242511	S32	P5
35	578196	8242643	S33	P5
36	578367	8242862	S34	P5
37	578445	8242962	S35	P5
38	578463	8242985	S36	P5
39	578820	8242737	S37	P6
40	578747	8242649	S38	P6
41	578700	8242593	S39	P6
42	577313	8241954	S40	P7
43	577443	8242118	S41	P7
44	577512	8242204	S42	P7
45	577568	8242275	S43	P7
46	577600	8242316	S44	P7
47	577665	8242399	S45	P7
48	577697	8242440	S46	P7
49	577729	8242481	S47	P7

			-	
50	577756	8242512	S48	P7
51	577840	8242619	S49	P7
52	577865	8242651	S50	P7
53	577948	8242758	S51	P7
54	577974	8242790	S52	P7
55	577723	8242939	S53	P8
56	577665	8242867	S54	P8
57	577579	8242756	S55	P8
58	577509	8242671	S56	P8
59	577415	8242553	S57	P8
60	577322	8242435	S58	P8
61	577314	8242427	S59	P8
62	577250	8242347	S60	P8
63	577755	8241408	S61	P9
64	577829	8241503	S62	Р9
65	577881	8241569	S63	P9
66	577972	8241689	S64	P9
67	578009	8241736	S65	P9
68	578076	8241825	S66	P9
69	578134	8241898	S67	P9
70	578102	8242760	S68	P10

Aquaquest Ltd. - Project No. AQ21-013